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Abstract

A common approach to estimate the effects of macroeconomic policy is to use a time series of plausibly exogenous

policy changes ("shocks") in a linear regression framework. This pairing can be powerful: under standard

identification assumptions, linear methods estimate a weighted average of a shock’s true marginal effects, even

when the effects are arbitrarily non-linear. The price of a vanilla regression’s lack of sensitivity is a black box,

as one point estimate cannot reveal where and to what extent nonlinearities exist. I show how to exploit the

mechanics of local projection and develop specifications to jointly test if marginal effects have sign and size

dependence. Using monetary policy shocks as an application, I find persistent nonlinearities in US data that

cannot be replicated by a New Keynesian model with asymmetric rigidities in price and wage setting.
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1 Introduction

Many of the most important advances in economics amount to progress in the struggle to identify and estimate

the effects of policy. A large literature surveyed in Ramey (2016) and Montiel Olea et al. (2025) has sought to

circumvent the eternal endogeneity problem by constructing time series of plausibly exogenous shifts in policy

("shocks") through various identification strategies. Recent work by Rambachan and Shephard (2025) and Kolesár

and Plagborg-Møller (2025) looks "under the hood" of these efforts and underscores their potential power: simple

Jordà (2005) local projections (LP) or vector autoregressions (VAR) estimate a weighted average of a shock’s true

marginal effects, even if there are arbitrary nonlinearities. The precedent for the "weighted average" interpretation

comes from well-known results in microeconometrics (e.g., Imbens and Angrist, 1994), but its utility has been

revived for macroeconomists thanks to assumptions researchers are willing to make about these policy shock series.

Kolesár and Plagborg-Møller (2025) demonstrate if the shock series is indeed independent of the other components

of an outcome variable’s data generating process, the weights themselves can be easily estimated and will also be

non-negative, meaning we can recover estimates of causal effects.

Though a regression of yt+h on x t can remarkably estimate a weighted average of a possibly non-linear

object of interest, this does not help answer whether nonlinearities exist to begin with. Even though we have an

approximation for the weights on x t , the marginal effects at x t are still unknown. The properties of marginal effects

are important. Linear models are popular in macroeconomics for their transparent dynamics and computational

efficiency, but this simplicity comes with a cost. Optimal policy in a linear world often amounts to just pushing

hard enough on the right instruments, but in practice policymakers must constantly confront diminishing returns

to intervention (e.g., "pushing on a string" in Fisher, 1935). Other than comparing linear estimation to some

non-linear benchmark, there’s no formally established, straightforward procedure to test if nonlinearities are

present in policy transmission. Some attempts have been made to gauge non-linear behavior with intuitively

specified local projections, but Caravello and Martínez Bruera (2024) show the lack of explicit econometric backing

can lead to incorrect inference.1

This paper presents a method to detect size effects (disproportionate impact of big and small shocks) and sign

effects (asymmetry of positive and negative shocks) in data. The approach extends the work of Rambachan and

Shephard (2025) and Kolesár and Plagborg-Møller (2025) by showing that if the right functions of x t are included

in a local projection, the corresponding weights will have properties that allow for testing for sign and size effects.

In related work, Caravello and Martínez Bruera (2024) show several properties of weights in LPs and show it’s easy

to conflate sign and size. They recommend two independent series of regressions that will separate sign and size

effects if the shock’s distribution is symmetric. This paper’s approach allows for joint testing of sign and size with

the same separation result, while also being less sensitive to the shock’s distribution and offering more appealing

1Some examples of using LP to assess nonlinearities can be found in Tenreyro and Thwaites (2016); Ascari and Haber (2022); Alessandri
et al. (2025) for monetary policy shocks and Ramey and Zubairy (2018); Ben Zeev et al. (2023) for government spending shocks.
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finite sample properties (e.g., speed of weight convergence) and interpretability. The proposed framework is also

related to semiparametric estimation with prespecified weight functions (see Kolesár and Plagborg-Møller (2025)

for an overview), but given data limitations common in macroeconomic settings, it’s convenient to have a stripped

down procedure with a similar objective.

Formally, the purpose of the paper is to show what functional regressors have the best weighting properties to

detect nonlinearities in LPs. The basis for this task is implicit regression weights depend only on the shock (not the

outcome variable), so the goal is to find specifications placing weight in the desired parts of a shock’s support.

Broadly, if we consider 4 types of shocks along the dimensions of big vs. small and positive vs. negative, there

should be 4 corresponding coefficients in the regression. "Corresponding" in this context means including just

the right combinations of regressors so that, for example, the regression weights ω(ϵ) on the big, positive shock

coefficient are only non-zero for ϵ sufficiently large. Appropriate weighting justifies labeling βi, j with combinations

of i = {big, small} and j = {positive,negative}. Testing for nonlinearities is then a simple task: for size effects, the

null hypothesis is βbig, j = βsmall, j and for sign effects it’s βi,pos = βi,neg. An advantage is coefficient differences may

be significant even if the underlying point estimates aren’t.

For implementation, a naive starting point of disjoint indicator functions turns out to be a safe way to carry

out the procedure: under an arbitrary shock distribution, there will be no false positives in population estimates

and the weights converge quickly in finite samples. Ideally, we would like to also be robust to false negatives

and avoid having to set fixed thresholds for defining a "big" shock (i.e., the paradox of the heap).2 I also provide

more general ways to construct functional regressors with desirable properties, but given the sample sizes in most

settings, simple indicator functions may often be the best choice. Similar limitations arise for trying to expand the

list of categories from big vs. small and positive vs. negative, but making these generalizations more tractable

could be fruitful explorations in future research.3

For readers solely interested in applying these methods, Section 4 gives an implementation guide and an

illustration with monetary policy shocks. I find nonlinearities for all variables generally peaking in the medium

to long-run, with firmest indications for size effects for both positive and negative shocks and sign effects in big

shocks. Barnichon and Matthes (2018) find opposing sign effects for unemployment and inflation and broadly

conjecture that a New Keynesian model with asymmetric adjustment costs in price and wage setting (Kim and

Ruge-Murcia, 2009) should be able to deliver whatever size and sign effects are found. I use a Metropolis-Hastings

routine to estimate the Aruoba et al. (2017) extension of the model and confirm certain parametrization can deliver

various nonlinearities on impact but they quickly vanish. This disconnect lends support to Friedman (1960)’s "long

and variable lags", but in an era where central banks don’t exert control over monetary aggregates (Cochrane,

2024), it’s not clear what mechanism would yield such a transmission path.

2"One grain of sand is not a heap of sand, two grains of sand is not a heap of sand,..., one million grains of sand is a heap of sand"
3A promising new strand of literature has tried to make progress on estimating state, size, and sign dependent effects (Barnichon and

Matthes, 2018; Gonçalves et al., 2024). General non-linear estimation is difficult and often sensitive to misspecification (White, 1980).
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2 Current Paradigm

2.1 Environment

Consider an arbitrary data generating process (DGP) ψh : R×RL → R for an outcome variable Y at time t + h

Yt+h =ψh(ϵt ,St+h) (1)

Here, ϵt is the structural shock of interest at time t and St+h is "everything else" in the system, which could

for instance include the information set at time t as well as leads and lags of ϵt (and other shocks). Following

Rambachan and Shephard (2025) and Kolesár and Plagborg-Møller (2025), the working definition of a shock,

with respect to a DGP of the form in (1), is that it satisfies ϵt ⊥ St+h ∀h≥ 0. In that case, note that the conditional

mean mh(a)≡ E[ψh(a,St+h)|ϵt = a] is equal to the average structural function Ψh(a)≡ E[ψh(a,St+h)].

Now we turn to the estimands of interest. For a group of N functions
�

fi(·)
	N

i=1 and control set Wt , suppose

we regress Yt+h on
n

1,
�

fi(ϵt)
	N

i=1 , Wt

o

. The specification is

Yt+h = α+ β1 f1(ϵt) + · · ·+ βN fN (ϵt) + γ
′Wt + ut+h (2)

= α+β ′Xt + γ
′Wt + ut+h

where Xt is a concatenation of
�

fi(ϵt)
	N

i=1. If ϵt is a shock and continuously distributed on an interval I ⊂ R,

Kolesár and Plagborg-Møller (2025)’s Proposition 1 can be extended to show that

βi =

∫

I

ωi(a) ·m′h(a)da (3)

with ωi(a) =
Cov(1{a≤ϵt}, X⊥i )

Var(X⊥i )
(4)

where X⊥i is the residual from projecting the ith element of Xt on the remaining N − 1 elements.4 Because ϵt is a

shock, estimands are a weighted average of Ψ ′h(·), the data generating process’s true marginal effects. In Appendix

A.4, the Frisch-Waugh-Lovell truncation is expanded to provide more explicit closed form solutions.

Estimands are a weighted average of marginal effects that can be arbitrarily non-linear, but estimation is a black

box with output that sheds no light on the existence of nonlinearities, namely size effects (disproportionate impact

of big and small shocks) and sign effects (asymmetric impact of positive and negative shocks). This representation

also contrasts with a "unit change" interpretation of regression, as each βi is a weighted average of the same object

(marginal effects of ϵt , not fi(ϵt)). So picking functions for inclusion in (2) boils down to weight engineering.

Several more implications of (3) and (4) are explored in the paper. (i) the weights only depend on ϵt but may not

if ϵt is not a shock (ii) if we instead use a proxy zt in place of ϵt (if ϵt is not observable), the weights still depend

on ϵt (iii) the estimand’s form says nothing about the finite sampling properties of an estimator bβi .

4And a constant. Also need
�

fi(ϵt )
	N

i=1 s.t rank condition holds, as will be discussed in Online Appendix B.2. Notice the weights can be
easily estimated using a loop of OLS regressions, see Kolesár and Plagborg-Møller (2025) for more details.
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2.2 Past Efforts To Estimate and Identify Non-Linear Marginal Effects

A large literature in applied macroeconomics has tried to estimate the effects of policy (e.g., interest rates or

government spending) by using Jordà (2005) local projection or vector autoregression in conjunction with a

constructed shock series meant to represent plausibly exogenous changes (e.g., Romer and Romer, 2004). The

default is to use a completely linear structure. Relative to the framework of (2), this means the only regressors are

the shock itself (identity function) and the control set. Some work has included other functions of the shock, like

f (ϵ) = ϵ2, in addition to the identity function in an attempt to capture non-linear effects of shocks. Caravello

and Martínez Bruera (2024) provide a survey of many past efforts and find such specifications are sometimes

incorrectly characterized. They consider a special case of (2)

Yt+h = α+ β1ϵt + β2 f (ϵt) + γ
′Wt + ut+h (5)

With respect to (5), they show if ϵt is a shock that follows a symmetric distribution then

(i): f (·) is even & DGP features no sign effects =⇒ β2 = 0

(ii): f (·) is odd & DGP features no size effects =⇒ β2 = 0

These results provide important clarity on past work (e.g., ϵ2 as a regressor isn’t informative about size effects) and

a strategy to test for nonlinearities. Because these statements hold regardless of the DGP’s other properties, the

presence of sign-dependence won’t distort the detection of size-dependence and vice versa. While this separation

property is valuable, it still leaves some questions unanswered. For example, if we include f (ϵ) = ϵ3 and reject

the null hypothesis that β2 = 0, we might feel comfortable concluding there are size effects but cannot say more.

There are many possibilities for the nature of the nonlinearity – in the extreme case, only negative shocks have size

effects (and positive shocks don’t) or vice versa. These possibilities, which we can’t distinguish between at present,

carry vastly different implications. This is also merely an identification result; it says nothing about finite sample

properties of hypothesis testing coefficients in (5). Later parts of the paper will show simulations illustrating

instances where performance may be lacking, even in ideal circumstances where the identification results hold

exactly because the shock is symmetrically distributed. As the distribution becomes more asymmetric, as is the

case for the monetary policy shock application in Section 4, their approach is less useful.

Besides a conflation of size and sign effects, some past work with specifications like (2) incorrectly ascribed

causal meaning to the estimands. Kolesár and Plagborg-Møller (2025) show that unless the data generating

process (1) matches the regression structure exactly, causal inference is not possible. For example, suppose we use

(5) with f (ϵ) = ϵ2. Unless the conditional mean of Y is a quadratic function in ϵ, β1+2β2ϵ does not have a useful

interpretation. This is because a corollary to their Proposition 1 is in specification (5), there must be negative

weight placed on β2 (see Appendix A.2 for a proof). In general, specifications that include functions of ϵ as

regressors cannot be used to estimate causal effects (White, 1980) but are rather a means to detect nonlinearities.
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In sum, linear regression is a surprisingly powerful tool for estimating non-linear marginal effects of a shock.

The important qualifier is estimates represent an approximation to a weighted average across a shock’s entire

support. While the weights’ form is known, underlying marginal effects are not; in other words
∑M

i ωi ·m′i = β is

still one equation with M unknowns. Recovering the exact marginal effect of a given value of ϵ is not possible,

but it is possible to test whether the marginal effect function is non-linear by augmenting linear regressions with

the proper functions. There does seem to be room to expand past approaches along the extensive margin (i.e.,

what kinds of nonlinearities) which may even open the door to statements about the intensive margin (i.e., how

non-linear). The rest of the paper will focus on how to use linear regression to be more descriptive about the types

of nonlinearities that exist in a DGP.

2.3 An Illustration of The Problem

The objective of Section 2 is to describe the status quo as concisely as possible, which thus far mostly involved

extending the analysis of more technical papers like Rambachan and Shephard (2025) and Kolesár and Plagborg-

Møller (2025). But what it means to have a weighting scheme
Cov(1{a≤ϵt },X

⊥
i )

Var(X⊥i )
is not obvious, so an example is useful.

Under the following DGP5

x t = ϵ
d
t , πt = c(x t) + βEt[πt+1] + ϵ

s
t where ϵd

t ∼U [−a, a], ϵs
t ∼N (0,σ2), c(x) =















κx b if x > 0

0 o.w
(6)

note that Et[πt+1] will be a constant. So a regression of πt on x t , or functions of x t , should be revealing. Because

of the simple structure, we might expect a specification of

Example 1: πt = α+ β1 x t · 1x t≤0 + β2 x t · 1x t>0 + ut

to perform well in estimating marginal effects. In the context of the previous discussion, the logic is the following:

(3) showed regression estimands are weighted averages, so shouldn’t weight only be placed where the indicator

functions are equal to 1 (active)? But this is not the case. Using the form in (4) we can plot the weights. Figure 1a

shows that while the aggregate weight where the indicators are not active is indeed 0, this is only because there is

positive and negative weight that cancels out. For the estimand on y ·1x>0, there is no issue because marginal

effects are 0 where the indicator is not active. However, bβ1 will not converge to 0 unless marginal effects are

constant for x > 0 (i.e., only if b = 0,1). This result holds more generally under standard choices for the

distribution of yt . Related, another possibly surprising revelation from Figure 1a is weights are not relatively

equal across the relevant parts of the shock’s support, even though it follows a uniform distribution. In fact, the

weight plots look similar when x t follows a normal distribution. A different instinct some researchers might have

5Motivated by a basic New Keynesian model. Caravello and Martínez Bruera (2024) use a special case to illustrate their separation result,
and I found tinkering with it was very helpful to understand the broader mechanics of the weights.
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is to estimate positive and negative effects separately, for instance by truncating Example 1 to only estimate β1.

Figure 1b shows this also poses an inference problem – over 30% of the weight is put on positive values when

using a standard normal shock.

(a) Uniform Shock with Example 1

(b) Standard Normal Shock with Modified Example 1

Figure 1

One common specification to detect asymmetry is to instead use x t itself in addition to max
�

x t , 0
	

Example 2: πt = α+ β1 x t + β2 max
�

x t , 0
	

+ ut

Figure 2 shows this specification can work for a symmetrically distributed shock, but only for a narrow purpose.

The right panel shows negative weights, but they serve a purpose: the estimand is the effects of positive shocks

relative to negative shocks. So if β2 ≡ 0, there are indeed symmetric effects from a positive and negative shock.

But the left panel shows β1 has no clear interpretation; the intuitive description of this specification that "β1 + β2
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is the (weighted) average effect of a positive shock" does not fit. This is one reason why in the Caravello and

Martínez Bruera (2024) benchmark for nonlinearity detection for this case is based on

Example 3: πt = α+ β1 x t + β2 f (x t) + ut

they recommend using an even function to gauge sign effects (e.g., x2 or |x |) and an odd function (e.g., x3) to

test for size. In that case, there will be no negative weight in β1, while the weights in β2 will look the same as in

Example 2 when testing sign effects. However, when the shock’s distribution is not symmetric, we lose the clean

separation of size and sign. Figure 3a shows that shocks of a given magnitude need not have the same weight,

which means that it’s possible positive and negative shocks of the same size have the same (absolute) effect but

β2 ̸= 0, meaning this is not a proper specification for sign effects.

Figure 2: Standard Normal Shock with Example 2

Figure 3a: Left Skewed Shock with Example 3

Even in the symmetric shock case, the Caravello and Martínez Bruera (2024) can have mixed results. For our

example DGP, in the b = 1 case, there are only sign effects. With uniform shocks, even though the structure of the

DGP is simple and the shock distribution is symmetric, the detection performance is poor with a realistic sample
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size: in only 16% of 10,000 simulations with n= 300, a null hypothesis of no size effects is rejected in a level-.05

test. The performance is better with standard normal shocks, rejecting in 73% of simulations. Similarly, for b = 2

and standard normal shocks, there are now size effects for positive shocks, but the null of no size effects is not

rejected in 35% of simulations. This highlights the limited power an identification result has in finite samples.

To make the failure more transparent, Figure 3b plots the weights in the size effect specification for one of the

simulations next to its limit.6 Even in the most aspirational scenario when shocks follow a well-behaved, symmetric

distribution, the weights may be far from converging.7

Figure 3b: Standard Normal Shock with Selected Simulation of Example 3

Another issue is interpretability. After conducting hypothesis tests on the Example 3 specification, we are still

pretty much in the dark about the underlying DGP. Even if the nulls are properly rejected, we can at best operate

under the belief that positive shocks have generally larger effects than negative shocks and (in the b = 2 case) big

shocks generally have disproportionately larger effects than small shocks, but this is imprecise. At a minimum, we

should seek to get more specific than "generally".

To explicitly highlight the themes from this section:

1. Regression weighting is not obvious ex ante; researchers should always check the weights for their shock

series and specification (Kolesár and Plagborg-Møller, 2025).

2. Including polynomials not sufficient to gauge nonlinearity (White, 1980)

3. It’s easy to conflate size and sign effects (Caravello and Martínez Bruera, 2024)

4. Traditional approaches are sensitive to sample size and the shock’s distribution

Section 3 builds on these lessons and formalizes a path forward using indicator functions.
6Here, f (x) = 1x≥x · (x − x) +1x≤−x · (x + x), where x is σ away from the mean (0). Results are similar for f (x) = x3.
7The n= 300 graph in Figure 3b varies across samples. The median simulated error relative to the sum of the area in each quadrant is

20%. In the language of Caravello and Martínez Bruera (2024), we would say this is problematic because the odd weights are non-trivial.
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3 Uncovering Nonlinearities

Formally, we are interested in the effects of a shock ϵt on an outcome Yt+h for different values of ϵt . Section 2

showed if several functions of { fi(ϵt)}Ni=1 are included in the regression, βi will represent a weighted average

of the marginal effects of ϵt on Yt+h on the region where there is non-zero correlation between the shock and

the residuals from projecting fi on everything else in the regression. This illuminates a path towards a more

precise characterization of the marginal effect function. If we define disjoint regions {Ii}Ni=1, we want to have

an estimate of weighted marginal effects on each region. At a minimum, the weights must be non-negative and

ideally they should not overlap. Caravello and Martínez Bruera (2024) show another desirable property is to make

the regions and the weights {ωi(·)}Ni=1 symmetric – if shock realizations a ∈ Ii and −a ∈ I j satisfy ωi(a) =ω j(−a),

then we can compare if the marginal effect function on regions i and j is asymmetric, without results being

distorted by the effects of size. Section 3.1 shows certain indicator functions can perform relatively well for these

standards and discusses the difficulties in improvements when sample size is limited. Section 3.2 discusses the

basic implementation and Section 3.3 outlines broader best practices for working with shock series.

3.1 The Power of Indicators

Disjoint indicator functions feel like they should meet the objectives, but Section 2 revealed two necessary

conditions: not interacting the indicators with the shock and including all regions of interest. To see this, we

will add a final example with standard normal shocks. One appealing property of using regressions to detect

nonlinearities is the implicit weighting is invariant to the outcome variable. So really, we don’t need a model to

evaluate the weights, just a time series for the shock process. So when we consider

Example 4: πt = α− βsmall, neg ·1−x t∈[
1

100 , 5
4 ]
− βbig, neg ·1x t<

5
4
+ βsmall, pos ·1x t∈[

1
100 , 5

4 ]
+ βbig, pos ·1x t>

5
4
+ ut

note that the weight plots in Figure 4 are the same no matter the left-hand-side outcome variable. The motivation

for this form is to set reasonable cutoffs for big and small shock magnitudes (e.g., for standard normal, x t = 1 is a

standard deviation and so on). The broader structure seeks to distinguish the effects of both size (i = {big, small})

and sign ( j = {positive,negative}). To test for specific size effects, the null hypothesis is βbig, j = βsmall, j , for sign

effects it’s βi,pos = βi,neg, and for general effects a joint test can be used. In over 99.9% of n= 300 simulations of

the DGP (6) using the same parameterizations as Example 3, when size or sign effects are present, the appropriate

nulls of no effect are rejected. Figure 4 shows weight plots for this specification.8 The reason for the drastic

improvement in performance is evident: the weights here are much further along in converging and also are more

directly placing weight where desired.9 Still, this is not perfect – "big shock" estimates put significant weight on

smaller values. But overall it’s clearly beneficial to have everything work through a single regression, where each

8Like Figure 3a, this varies across simulations, but the variance here is concentrated exclusively at the endpoints for the big shock weights.
9Appendix A.1 provides more simulation evidence on performance relative to the Caravello and Martínez Bruera (2024) benchmark.
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region of interest has its own corresponding estimand. The point estimates themselves are also more revealing, as

taking the difference in coefficients provides an indication of how quickly a linear approximation would diverge.

Figure 4: Standard Normal Shock with Example 4

In terms of why these indicator functions work, a formal proof of their properties can be found in Online

Appendix B.1 and B.2. Broadly, under an arbitrary shock distribution, all estimands will be the same if the DGP is

linear in the shock. In terms of disentangling the effects of size and sign, there is still a complete separation when

the shock is symmetrically distributed as in Caravello and Martínez Bruera (2024). For the non-symmetric case, if

there are no size effects, estimands on regions of the same sign will be the same, meaning size effects can also be

cleanly detected.10 Online Appendix B.3 shows that without a symmetric distribution, it is generally not possible

for any method in finite samples to distinguish between a true sign effect and positive and negative shocks having

the same kind of size effect. This procedure does provide a simple robustness check to guard against this edge

case: defining the small regions so that the weights on βsmall, neg,βsmall, pos are as similar as possible.11 Besides

consulting Online Appendix B for the explicit econometric backing, the next subsection details the implementation

and tries to weave in some of the intuition for the identification proof.

3.2 Implementation

Here are the broad steps to implement this procedure

1. Define regions {Ii}Ni=1

2. Exclude 0

3. Define fi to be sign(x) ·1x∈Ii

4. Rescale fi by coefficient in projection of the shock on { fi}Ni=1

We will go through each step and conclude with demonstrating what can go wrong when deviating from them.
10Note that this is not the case for the Caravello and Martínez Bruera (2024) approach.
11"Robustness check" refers to how the point estimates change. Since the definitions are conditional, inference is more complicated.
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1. Define regions

This procedure can be extended to an arbitrary number of regions, but because the number of large shocks will

typically be limited, the previously discussed baseline of 4 is recommended. Needing to set a threshold for what a

"big" shock is not ideal. One thing that helps is first transforming the shock so that the set of non-zero observations

has standard deviation 1 and the entire series is mean 0. Thresholds in terms of standard deviations are simpler to

reason about. A good rule of thumb is to ex ante commit to one threshold and then to see how results change ex

post after it’s mildly perturbed in both directions.

2. Exclude 0

Including indicator functions on all possible values of a shock will result in perfectly collinear regressors. So

for the regions on either side of the real line, zero should be excluded. Shock series with lots of zero values

can run into problems for small samples (Barnichon and Mesters, 2025), but here there’s a benefit of being able

easily circumvent linear dependence. It’s good practice to exclude a small interval centered around zero as well,

especially if there aren’t many zero values. A natural question is why can’t we instead exclude some other region.

Considering the DGP from the last section, one might propose using

Example 5: πt = α− β1 ·1−x t∈(0,1] − β2 ·1−x t<1 − β3 ·1x t∈[0,1] + ut

With respect to the use of dummy variables in microeconometrics, one might expect that estimands represent

effects relative to the excluded region. Figure 5 shows while the estimands do have a clear interpretation, in some

cases it initially seems at odds with the Example 5 specification. For each estimand βi , say the corresponding

indicator is active on interval Ii . Figure 5 shows the estimands are weighted averages of marginal effects on

the interval from the left endpoint of Ii to∞.12 So these objects may have some use; under a linear DGP, these

estimands will all be the same. But the weights are, with respect to the indicators they relate to, poorly targeted.

Figure 5: Standard Normal Shock with Example 5

3. Define fi(x) = sign(x) ·1x∈Ii

fi should be an indicator of whether the shock is in a given region multiplied by the sign of the shock.13

12Because weights are negligible where ϵt has low density, weights are essentially 0 starting from ≈ 3 standard deviations.
13Multiplying by the sign function is not critical but is rather for ease of interpretation. Without this transformation, the sign of the estimands

on negative regions would be the opposite of average marginal effects.
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4. Rescale fi

Notice in Figure 4 the weights do not all integrate to the same value, meaning comparing estimates could be

distorted by a scaling issue. If we rescale the coefficients by the projection of the shock on all the functions, all the

weights will integrate to 1 by construction, meaning they are both comparable and interpretable as a traditional

weighted average. Because the functions are now generated regressors, standard errors require a delta method

adjustment, but the adjustment turns out to be small in practice (see Appendix A.3 as well as the code on this

paper’s GitHub repository).14

Where deviating from these steps can go wrong

Including the shock itself or interacting the shock with the indicator functions can lead to unexpected results. To

fix ideas, we again use DGP (6) with standard normal shocks and consider

Example 6: πt = α− β1 ·1−x t∈(0,1] − β2 ·1−x t<1 + β3 ·1x t∈(0,1] + β4 ·1x t∈[0,1] + β5 x t + ut

Figure 6 shows the resulting weights behave erratically and none of the estimands have any meaningful interpre-

tation. The weights can also behave counterintuitively if the shock is interacted with an indicator function. This is

why for any specification used, it’s always best to first simulate the weights under the simplest, standard normal

case and ensure the description of the estimation is justified. Once more, Figure 6 also highlights the disconnect

between our instinct when looking at regression coefficients as representing the effect of a unit change and what

the estimands actually imply. All estimands on functions of f (ϵt) are weighted averages of the same object. The

only difference is how the weighting occurs, and it’s often not what we would expect. Online Appendix B sheds

some more light on the properties of the linear regression weights that result in this behavior.

Figure 6: Standard Normal Shock with Example 6

14The repository is located at https://github.com/paulbousquet/UncoveringNonlin
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3.3 General Best Practices

Just as slight perturbations in the local projection specification can yield vastly different results, it’s also important

to be cautious about identifying assumptions about a given shock series. The results in Section 2 rely on using

the actual structural shock ϵt in the regression. In practice, we will have some shock proxy zt . Kolesár and

Plagborg-Møller (2025) note that if ϵt is unobserved, the form of the weights is unknown, so plotting the weights

under the assumption that ϵt = zt provides the "best case scenario". Ideally, the proxy should indeed be a (classical)

proxy – departures from the structural shock amount to noisy measurement. But a measurement error process

can be complicated, even if induced from noise alone. Chen et al. (2011) show that the usual "attenuation bias"

relationship to estimands does not hold if the measurement error is non-linear. Appendix A.1 explores consequences

of classical measurement error and thankfully shows under a rich set of measurement error types (e.g., nonlinearities,

heteroskedasticity, state-dependent noise) the "best case" weights are good approximations for the true weights.

Even though the bias can go in either direction, that does not matter for the hypothesis testing procedure.

The more important issue is that our shock proxy may not be "clean". For example, we may only be willing to

argue a shock series satisfies independence conditional on some control set. Kolesár and Plagborg-Møller (2025)

show in this case we lose the powerful identification results because there will generally be negative weights. If the

proxy is tied to more than one structural shock (and not accounted for), Koo et al. (2024) show inference will be

incorrect.15 A complication of the guidelines for assessing proxy quality a lack of an adequate sensitivity analysis

procedure. There’s a natural concern that certain control variables can drive results if a proxy is not a pure shock,

and to this effect Kolesár and Plagborg-Møller (2025) recommend dropping various controls and seeing if results

change, a ubiquitous robustness check strategy. Unfortunately, these results may be misleading. In the simulations

for Appendix A.1, I find even when the outcome DGP is linear in the shock, (small sample) point estimates vary

considerably when different control sets are used. So we cannot distinguish between variation indicating sensitivity

to controls or sensitivity to sample size. This raises a broader point: another common robustness check is to redo

the main analysis with different shock proxies. But because these proxies are constructed so differently (see, e.g.,

Brennan et al. (2025); Adams and Barrett (2025) for comparisons of monetary policy shock series), in general

there’s no reason the implied weights and therefore results should be similar (McKay and Wolf, 2023). Until better

sensitivity analysis tests are available, the best strategy is to have a convincing argument ϵt ≈ zt .

Once a shock series has been selected, there are other considerations for estimation. A great deal of work

has been done to clarify the differences between LP and vector autoregression (VAR). (Plagborg-Møller and

Wolf, 2021) prove LP and VAR are asymptotically equivalent in the limit (if lag order is high enough). So even

researchers who prefer VAR estimation should run the LP analogue and plot the weights to have a better sense of

what is being estimated. While there will be finite sample differences (Li et al., 2024; Montiel Olea et al., 2024),

15For proxies with many zeros, finite sample correlation is inherent, see Barnichon and Mesters (2025) for discussion and a proposed fix.
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plotting the weights in the LP will still be informative. Borrowing from Kolesár and Plagborg-Møller (2025)’s

example, if all the weights on a government spending shock are being placed on positive values, what estimation

is actually uncovering are the effects of spending buildups. They show this phenomenon largely holds for several

popular shock series, so it’s important, no matter the preference for LP vs. VAR, to plot the weights. Overall,

Montiel Olea et al. (2025) provides a survey on considerations for LP and VAR estimation and gives an overall

recommendation of LPs for finite sample flexibility. For the procedure outlined in this paper, there are also separate

interpretation issues, which are discussed in context of the application in Section 4.2. Online Appendix B also

discusses generalizations, constructing functions using the empirical CDF or machine learning, which I find have

more limited use with typical sample sizes in macroeconomics.

4 Application

Section 4.1 applies the guidance in Section 3.3 for choosing a monetary shock proxy. Because many great papers

and people have been committed to the topic, the discussion is specialized and may not be of interest to general

readers. Likewise, interested readers may be disappointed that some of the arguments are not fully fleshed out,

which I leave to separate work. Section 4.2 shows the nonlinearity detection results and briefly outlines an attempt

to match them with a non-linear equilibrium model.

4.1 Selecting a Monetary Shock Series

To select a series for assessing possible nonlinearities in the transmission of U.S. monetary policy, we have to

address a question for which there is surprisingly not a straightforward answer: what is a (structural) monetary

policy shock? Unless one is willing to argue that central banks have a systematic way to set rates they decide

arbitrarily to deviate from, which seems like a poor description of an institution like the Federal Reserve and

its army of economists, monetary shocks are changes in policy unanticipated by private agents. This makes the

high-frequency measures of forecast errors backed out from price changes in futures markets a natural choice.

Within the class of high-frequency measures, there are several options. Bu et al. (2021) is currently popular

because of its ability to easily handle the zero lower bound period by creating a single measure to represent shocks

across the entire yield curve. At the same time, their measure cannot be easily mapped into a candidate data

generating process, so it’s less clear what would be estimated (Brennan et al., 2025). Another issue is that because

private agents do not know perfectly the central bank’s reaction function and there may not be a single information

set for all agents, changes in futures markets may be representing combinations of multiple structural shocks,

which is a challenge. There are several measures that look at changes to expected future interest rates, rather than

the current period, and try to decompose them into "forward guidance" vs. "information shocks" (e.g., Jarociński

and Karadi, 2020), but because these measures are estimation-specific, there is a risk that the deviation from
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structural shocks is systematic or sample-dependent, rather than pure noise. Instead, sacrificing performance

at the zero lower bound and looking at changes to the Fed’s expected change to its target in the current period

seems to be the most practical option. All concerns about the possible tangling of effects from forward guidance,

information, credibility, preferences, etc. are moot when looking at the current period because once an action is

announced, the adjustment is not a function of ambiguity about any of those things because the Fed chair has

essentially written the futures price correction in stone.16 This leads to a selection of the Jarociński (2024) MP1

series, originally developed by Kuttner (2001), as the proxy of choice.

Before moving on to discussing other approaches more in-depth, it should be noted there are many concerns

specific to the high-frequency series. When outcome variables are not also high-frequency, Jacobson et al. (2024)

warn of temporal aggregation bias because the Federal Reserve’s meeting calendar fluctuates and sometimes

multiple shocks occur within the same month. Absent getting better data, the best response is likely to not put

much stock in the results at the shortest horizons. Casini and McCloskey (2024) also point out that using a

narrow observation is not actually a magic identification wand, though they show the Nakamura and Steinsson

(2018) measure is relatively robust to the potential concerns. A final consideration is that these futures markets

are not fully saturated with participants, particularly during the zero lower bound period, and past work has

shown many popular high-frequency series are correlated with macroeconomic fundamentals (Miranda-Agrippino

and Ricco, 2021; Bauer and Swanson, 2023). This predictability concern has rightly been a focal point of the

recent literature (Acosta, 2023), but the results may not be as damning as they seem. Leaving aside that these

markets may be innately "inefficient", it seems more likely that these finite sample results are showing the effects

of heteroskedasticity. When there is more movement in macro fundamentals, it is more likely for central banks

to act, thus creating more variance for structural shocks. Basic heteroskedasticity itself does not significantly

disturb the utility of proxies (Section 3) but more work is needed to clarify the relationship between (endogenous)

second-moment dependence and "selection bias" (Rambachan and Shephard, 2025).

Another popular method in this literature is projection orthogonalization, or using the residuals from a linear

regression. This is the basis for Romer and Romer (2004), who represent the change in interest rates unrelated to

the Fed’s information with the residuals in a regression of changes in the federal funds rate on Fed forecasts.17 But

the residuals themselves are extremely sensitive to the estimated coefficients, and we should not have faith that

ϵt ≈ zt – Cochrane (2011) demonstrates this won’t occur even in the simplest case where the data generating

process is linear (a basic New Keynesian model with a Taylor Rule). Miranda-Agrippino and Ricco (2021) and

Bauer and Swanson (2023) use orthogonalization by residualizing existing measures of monetary policy shocks to

guard against claims of predictability (see Acosta (2023) for a survey). These adjustments will likewise be sensitive

to the realized OLS point estimates, which really have bite given the sample size. For instance, Bauer and Swanson

16There is risk of contamination in the few instances where there were shocks in the days before the formal announcement of the target.
17Aruoba and Drechsel (2025) argue these forecasts don’t span the information set. They extend the methodology with text analysis.
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(2023)’s shocks are based on a 1988-2023 monthly sample. If they had originally done this procedure in 2015, the

median percent difference in shock magnitude between the original and "updated" series would be over 100%.18

4.2 Nonlinearities in the Effects of Monetary Policy Shocks

I look for evidence of nonlinearities in monetary policy transmission by applying the described procedure to

outcome variables of industrial production, consumer price index (CPI), consumption, and unemployment from

November 1988 to January 2020 using the MP1 series.19 I use log differences and cumulate them over future

horizons so that the left-hand side variables represent "percent change since the shock occurred". Before detailing

the inference procedure, it’s useful to first establish how to interpret point estimates. Recall within this paradigm,

we define size and sign effects in terms of coefficient differences. For size effects, the big and small estimates

will be the same (in population) if and only if marginal effects on the region where there is non-overlapping

weight are not constant. For example, a negative sign effect for big shocks and industrial production can be

interpreted as the expansionary effect for big negative shocks (on IP) is smaller than the contractionary effect from

big positive shocks. As discussed in Section 3.1, sign effects are trickier because of the difficulties in falsifying the

edge case where there are symmetric size effects (Caravello and Martínez Bruera, 2024). Ideally, sign effect tests

(H0: βpos−βneg = 0) can provide an indication for or against a narrative similar to "pushing on a string" (Fisher, 1935;

Tenreyro and Thwaites, 2016); βpos < βneg for output proxies indicates positive shocks have a disproportionately

larger contractionary effect relative to the expansionary effect of negative shocks.

Figure 7 shows the point estimates using penalized local projection (Barnichon and Brownlees, 2019) indicate

size effects for positive shocks and sign effects for big shocks. For all variables with the exception of CPI, larger

positive shocks have a disproportionately more contractionary effect. The sign effect plots broadly support a

"pushing on a string" story (for unemployment, the signs flip: βpos > βneg means larger contractionary effects).

The more relevant question is whether the point estimates are meaningful indications of persistent nonlinearities.

For inference, Barnichon and Brownlees (2019) note that a downside to penalization methods is generally

complicated asymptotics, especially when using cross-validation. To over-compensate for any potential bias, I

fix the penalty parameter at a mild level ex ante and use 99% confidence intervals with a Huber-White variance-

covariance matrix from an even more under-smoothed estimate (Montiel Olea and Plagborg-Møller, 2021). Also,

it’s tempting to think about Figure 7 through the lens of the difference between an (average) impulse to two

different types of shocks. This interpretation more so holds for sign effects, but the weighting need not be the same

for big and small shocks for the same size category (Caravello and Martínez Bruera, 2024). For a robustness check,

I find that results do not differ when the big shock regions are manipulated to have more similar weighting. For

size effects, there is weight overlap for shock regions of the same size. So we can instead interpret those plots as

18Sims (1998) cautions against scrutinizing shock magnitudes in VARs, which are relative to a given information set. The concern here is
distinct. Again, ϵt ≈ zt means the bias should be from systematic measurement noise (so shouldn’t be mechanically sample-dependent).

19More details can be found in Online Appendix D.4.
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Figure 7: Indicator Approach with MP1 Shocks

how fast a linear approximation diverges. Appendix A.5 features the remaining visualizations. In particular, there

is evidence big negative shocks have a more expansionary effect in the long run than small shocks (Figure 11). For

sign effects, not much can be said about asymmetries for small shocks (Figure 12).

The nonlinearities are therefore statistically meaningful, but there’s a point to be made about whether they

are economically meaningful. For example: suppose marginal effects for positive shocks are β and for negative

shocks β + ϵ. A population hypothesis test will reject a null hypothesis of linearity, even though a linear model

is appropriate. Because the indicator functions are normalized so that their individual weights integrate to 1,

coefficient differences can give some insight into whether the degree of nonlinearity matters because they have a

reasonable interpretation as a difference in means. For the application in this section, this translates to measuring

the nonlinearity in terms of difference in percentage change in outcome since the shock occurred. Referencing

Figure 7 confirms the economically significant effects.20

Overall, a picture is painted that is hard to square with standard models: nonlinearities that peak in the

medium to long run. The next step after finding results like this is to try and explain them. To compare to the

results from US data, a basic point of reference would be using a model that features meaningful nonlinearities to

generate data and then run the same regressions. Barnichon and Matthes (2018) conjecture that sign effects that

work in opposite directions for unemployment and inflation, which is what we observed in the last section, can

be rationalized in a model with downward-rigid prices and wages (Kim and Ruge-Murcia, 2009). In this setting,

20To avoid haggling over what constitutes meaningful nonlinearity, one option is to normalize by the linear estimate’s standard deviations, so
coefficient differences are still in units of effect sizes but in some sense have an interpretation similar to t-statistics (i.e., gesturing towards the
likelihood parameters were drawn from the same distribution). Results are also more easily comparable to DSGE model output by minimizing
unimportant scaling distortion from finite sample properties of time series and model-simulated data. Details are in Online Appendix D.6.
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firms seeking to change their price at a rate different from steady-state inflation face an adjustment cost

Φ
p
t (πt) =

φp

ψ2
p

�

e−ψp(πt−π∗) +ψp(πt −π∗)− 1
�

For ψp > 0, it’s more costly to decrease prices than raise them (downward-rigid), for ψp < 0 prices are upward-

rigid, and the function limits to symmetric adjustment costs as ψp→ 0. Nominal wage adjustment costs take on

the same structure. Past estimation of this model has found evidence of downward rigidity in prices and wages,

consistent with empirical evidence dating back to Keynes (1936) and Tobin (1972).

Since the relevance for this paper is largely motivation, I relegate most details about the model and the

estimation to Online Appendix D.5. Using the same sample period of US data, the Aruoba et al. (2017) extension

of the downward-rigidity model is estimated to second order via a standard random walk Metropolis-Hastings

algorithm and particle filter (Fernandez-Villaverde and Rubio-Ramirez, 2007). I use the distribution of parameters

generated by this exercise to simulate data and run the same local projections procedure to create Bayesian

analogue (i.e., using credible sets instead of confidence intervals) for the empirical results. These exercises show

(full results in Online Appendix D.5) that while the model can generate nonlinearities, in general the observed

asymmetric effects for both size and sign occur on impact and then quickly dissipate. I also take the posterior

mode of all parameters and then vary both asymmetry parameters (one at a time, in both directions, and then

both at once in the same direction) while keeping everything else fixed, then simulate data and estimate for each

combination. This exercise provides some clarity: on impact, certain combinations of the asymmetry parameters

can generate any desired nonlinearities, but it cannot be sustained.

Looking at the impulse response functions directly from the model (rather than running a LP) corroborates the

above interpretations. Figure 8 shows impulse responses for both negative and positive shocks of different sizes.

By a horizon of 5 periods after the shock, the magnitude of responses is near or below zero. Online Appendix D.5

discusses various extensions to the model, like adding autocorrelated shocks, that ultimately don’t help much.

One reason why the effects of monetary shocks may not have a lasting effect is the lack of inertia in interest

rate setting. Even though the Metropolis-Hastings produced draws with moderately high persistence in the Taylor

Rule (posterior mode of ρr ≈ .67), an inspection of model-simulated data reveals that whenever a large monetary

shock takes the central bank away from its (nominal) target i∗, it generally doesn’t take long to get back. Table 1

in Online Appendix D.5 shows the results of 10,000 simulations at the posterior mode. For each simulation, I take

the median distance between the target interest rate and the current interest rate h periods after a big change in

interest rates (magnitude greater than 10%) and then average across simulations. In periods in which the central

bank heavily adjusts the interest rate, the target is relatively far away, but this is almost completely undone 2

periods later. There is also a large asymmetry on impact that quickly becomes less dramatic. Regardless of model,

consecutive, large realizations of white noise innovations are unlikely, but the staying power of shocks can vary.

These results suggest that the nonlinearities observed in data may not have an explanation in our standard class
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Figure 8

of models and warrant further exploration of channels in monetary policy transmission. There should also be

some broader considerations added in model selection. Linearized general equilibrium models, appealing because

of a reduction of analytical and computational complexity, can output suboptimal normative prescriptions if the

economy actually follows a data generating process with strong non-linear components.

5 Conclusion

This paper demonstrates a new method to test for nonlinearities in data exploiting properties of least squares

regression that are consequences of assumptions about proxies for structural shocks that are commonly made in

the applied macroeconomics literature. Three new approaches within this framework were characterized, but

the simplest (disjoint indicator functions) seem to be the most useful in practice. While this seems to be yet

another example of the power of OLS in spite of its simplicity, there are some limitations setting the table for future

work. There is a tension that emerges between making the weights appear in the desired places and the efficiency

of estimates. The disjoint indicator functions are the most efficient option at the expense of having relatively

dispersed weight. So while we can view coefficient differences as a good gauge of deviations from linearity, we

cannot interpret the estimands themselves as weighted averages of marginal effects on the areas the indicator

functions are active (they are weighted averages over a larger region). It seems possible to expand along this

dimension, but it’s not immediately clear how. The procedure informed an application to monetary policy shocks,

which showed results that are difficult to match even with a general equilibrium model that featured rich size and

sign nonlinearities. Results like this can inform paths forward for better understanding the transmission of policy.
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Jarociński, Marek, and Peter Karadi. 2020. “Deconstructing Monetary Policy Surprises - The Role of Information

Shocks.” American Economic Journal: Macroeconomics, 12(2): 1–43.

Jordà, Òscar. 2005. “Estimation and Inference of Impulse Responses by Local Projections.” American Economic

Review, 95(1): 161–182.

Keynes, John Maynard. 1936. The General Theory of Employment, Interest and Money. Cambridge: Macmillan

Cambridge University Press.

Kim, Jinill, and Francisco J. Ruge-Murcia. 2009. “How much inflation is necessary to grease the wheels?” Journal

of Monetary Economics, 56 365–377.

22



Kolesár, Michal, and Mikkel Plagborg-Møller. 2025. “Dynamic Causal Effects in a Nonlinear World: the Good,

the Bad, and the Ugly.” Working Paper.

Koo, Bonsoo, Seojeong Lee, and Myung Hwan Seo. 2024. “What Impulse Response Do Instrumental Variables

Identify?” April, Working paper.

Kuttner, Kenneth N. 2001. “Monetary Policy Surprises and Interest Rates: Evidence from the Fed Funds Futures

Market.” Journal of Monetary Economics, 47(3): 523–544.

Li, Dake, Mikkel Plagborg-Møller, and Christian K. Wolf. 2024. “Local Projections vs. VARs: Lessons From

Thousands of DGPs.”

Loria, Francesca, Christian Matthes, and Donghai Zhang. 2025. “Assessing Macroeconomic Tail Risk.” The

Economic Journal, 135(665): 264–284.

McKay, Alisdair, and Christian K. Wolf. 2023. “What Can Time-Series Regressions Tell Us About Policy

Counterfactuals?” Econometrica, 91(5): 1695–1725.

Miranda-Agrippino, Silvia, and Giovanni Ricco. 2021. “The Transmission of Monetary Policy Shocks.” American

Economic Journal: Macroeconomics, 13(3): .

Montiel Olea, José Luis, and Mikkel Plagborg-Møller. 2021. “Local Projection Inference is Simpler and More

Robust Than You Think.” Econometrica, 89(4): 1789–1823.

Montiel Olea, José Luis, Mikkel Plagborg-Møller, Eric Qian, and Christian K. Wolf. 2024. “Double Robustness

of Local Projections and Some Unpleasant VARithmetic.”

Montiel Olea, José Luis, Mikkel Plagborg-Møller, Eric Qian, and Christian K. Wolf. 2025. “Local Projections or

VARs? A Primer for Macroeconomists.” In NBER Macroeconomics Annual 2025.

Nakamura, Emi, and Jón Steinsson. 2018. “High-Frequency Identification of Monetary Non-Neutrality: The

Information Effect.” The Quarterly Journal of Economics, 133(3): 1283–1330.

Plagborg-Møller, Mikkel, and Christian K. Wolf. 2021. “Local Projections and VARs Estimate the Same Impulse

Responses.” Econometrica, 89(2): 955–980.

Rambachan, Ashesh, and Neil Shephard. 2025. “When do common time series estimands have nonparametric

causal meaning?”, Working paper.

Ramey, Valerie. 2016. “Macroeconomic Shocks and Their Propagation.” In Handbook of Macroeconomics. Chap. 2.

Ramey, Valerie A., and Sarah Zubairy. 2018. “Government Spending Multipliers in Good Times and in Bad:

Evidence from US Historical Data.” Journal of Political Economy, 126(2): 850–901.

23



Romer, Christina D., and David H. Romer. 2004. “A New Measure of Monetary Shocks: Derivation and

Implications.” American Economic Review, 94(4): 1055–1084.

Sims, Christopher A. 1998. “Comment on Glenn Rudebusch’s “Do Measures of Monetary Policy in a VAR Make

Sense?”.” International Economic Review, 39(4): 933–941.

Stock, James H., and Mark W. Watson. 2018. “Identification and Estimation of Dynamic Causal Effects in

Macroeconomics Using External Instruments.” Volume 128, Issue 610, 128(610): 917–948.

Tenreyro, Silvana, and Gregory Thwaites. 2016. “Pushing on a String: US Monetary Policy Is Less Powerful in

Recessions.” American Economic Journal: Macroeconomics, 8(4): 43–74.

Tobin, James. 1972. “Inflation and unemployment.” American Economic Review, 62 1–18.

White, Halbert. 1980. “Using Least Squares to Approximate Unknown Regression Functions.” International

Economic Review, 21(1): 149–170.

Xu, Ke-Li. 2023. “Local Projection Based Inference under General Conditions.” Working Paper.

24



Appendix21

A.1 Simulation Performance

This section will assess performance across a variety of data generating processes. The DGP in (6) from Example 3

and Example 4 gives a benchmark for the prevailing takeaway from this section. For the case of b = 2 with

standard normal shocks (and sample size n= 300), a deep learning approach only offers a modest improvement

over the Caravello and Martínez Bruera (2024) approach, failing to reject a null hypothesis of no size effects

in 26% of simulations. The generated regressor approach fares even worse, correctly rejecting in only 60% of

simulations – the methods developed to produce fewer false negatives failed to do so. This is because, while the

weights look more appealing (see Online Appendix B.6), the variance of the coefficients limits the usefulness of

this property. Online Appendix B discusses two alternatives. For the generated regressor approach, the functions

corresponding to big shocks in particular have large variance, in part because less of the sample is concentrated

there. For deep learning, the idiosyncrasies the neural network creates to respect the constraint set (see Online

Appendix B.4) also create more variance. And to re-emphasize – these occur even with DGP (6), which outside of

a single kink, is about as vanilla as it gets (outcome driven entirely by two i.i.d shocks with no autocorrelation).

This is an indication that disjoint indicator functions should be the default method of choice, though it’s still useful

to report results from all.

One last, previously omitted case to discuss before moving on from DGP (6) is b = .5 (square-root). While the

indicator functions perform the best in this environment, nulls are not rejected in nearly 40% of cases, with the

other methods performing far worse. This presents a stark limitation – an important nonlinearity of economic

interest would be diminishing returns to scale of policy intervention. However, these are intrinsically harder to

detect, as the second derivative of the square-root function is essentially constant after moving away from 0. This

is an unfortunate downside the framework is not as well-equipped to handle.

To get a more holistic picture of performance, we now consider a richer class of data generating processes. In

particular, Li et al. (2024) assess the finite sample tradeoffs between local projections and vector autoregressions

by making thousands of random selections of 5 variables from the Stock and Watson (2018) dataset and fitting

a dynamic factor model to create a DGP (and back out the structural shocks). I use this as a starting point and

compare all the above methods against a multitude of flavors for DGP. Because each DGP has its own structural

shock, it’s not feasible to train a neural network on each one. I find the point estimates are very similar to the

disjoint indicator approach, which is not surprising given the functional forms it consistently converges to are

broadly well-approximated by combinations of indicator functions and linear functions.

I modify a threshold-VAR model from Loria et al. (2025) who argue it captures some fundamental macroeco-

nomic dynamics. The structure is centered around 3 components: growth of real activity yt , a financial factor

21The Online Appendix can be found in the paper’s GitHub repository https://github.com/paulbousquet/UncoveringNonlin
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ft , and a macroeconomic factor mt . I keep this same system of 3 equations but add inflation πt and additional

fundamentals Wt . I use the Stock and Watson (2018) dataset and randomly select a series from the relevant group

of variables for yt , ft , mt , andπt and randomly select other variables from the remaining categories for Wt . The

procedure detailed in Li et al. (2024) is used to generate a structural monetary policy shock X t for this system

using a dynamic factor model representation. The skeleton of the threshold-VAR DGP is

yt = β0 + β1 ft + β2mt + β3πt + β
′
wWt−1 + uy

t

ft = α0 +α1 ft−1 +α2mt +α3 g(x t) ·1x( ft−1, mt−1) + u f
t

mt = γ0 + γ1mt−1 + γ2 ft−1 + γ3 g(x t) ·1x( ft−1, mt−1) + um
t

(7)

where g(x t) is some non-linear function of the shock and 1x( ft−1, mt−1) is a state-dependent multiplier. In the

baseline calibration, I set 1x ( ft−1, mt−1) = 3 if the financial and macroeconomic factors are both negative and equal

to 1 otherwise. I estimate the other parameters in this model using g(x t) = x t and omitting the state-dependence.

Then I simulate a time series for yt , ft , and mt using (7) with a few different choices for g(·) and the data for πt

and Wt . For each choice of g(·), I run several local projections at horizon h= 0 for the different approaches for

detecting nonlinearities. The LPs have 196 observations and include 4 lags of all variables except Wt , which is not

included at all to mimic the presence of omitted variables. The results are averages across 100 variations of (7)

with 10,000 simulations each. Inference is performed with Huber-White standard errors (Montiel Olea et al., 2024)

and results are materially the same using more involved estimations of the variance-covariance matrix (Xu, 2023).

Figure 9 plots the power of hypothesis tests using the indicator function approach and the even/odd weight

decomposition of Caravello and Martínez Bruera (2024) across 3 specifications for the non-linear shock function

g(x t) that feature both size and sign effects. The point of the plots is to show how power changes as we scale a

component of g(·) by θ . With a foundation of c · 1x≥c + x · 1x<c , the first specification has the first term scaled

by θ , likewise for the second specification and the second term. This can be thought of as two ways of adjusting

a jump then plateau of effects. The third specification is θ x2 · 1x≥c + x · 1x<c .
22 The shock is standardized and

the cutoff c is set to 1 in the DGP. Across simulations, the structural shocks follow a roughly but not perfectly

symmetric distribution, making the even/odd approach a valid choice ex-ante.

The plots show that the indicator function approach strictly dominates the even/odd decomposition, though the

gap is decreasing in the size of these specific nonlinearities. The Caravello and Martínez Bruera (2024) procedure

mostly dominates the generated regressor approach for the different parameterizations, so it’s excluded for clarity.

The indicator function approach has the advantage of insignificant coefficients not being the end of the story; the

estimates may be different enough that a null of linearity can be rejected. In principle, this advantage should

extend to the generated regressors, but their unconventional construction clearly leads to even more inefficiency.

22The first two specifications were selected to give all methods as difficult task, with the third being a more traditional non-linear structure.
The results for the first two specifications are similar if we multiply x through their corresponding g(·).
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Figure 9

In every previous simulation, we have assumed the structural shock ϵt is perfectly observed. This will obviously

not be the case in practice. As mentioned in Section 2, if the structural shock is not observed, the weights are

unknown. Assuming that a proxy zt is in fact the structural shock represents the ceiling on estimation quality.

But this says nothing about how useful what we’re actually estimating is. Kolesár and Plagborg-Møller (2025)

show that if controls are needed for identification, we cannot have any faith in what we’re estimating unless the

propensity score is linear. Instead, the proxy should indeed be a proxy in a classical sense – departures from

the structural shock amount to noisy measurement. This is merely a conjecture; measurement error itself can

be complicated, even if induced from noise alone. Chen et al. (2011) show that the usual "attenuation bias"

relationship to estimands does not hold if the measurement error is non-linear. Thankfully, I find in simulations that

under a rich set of measurement error types (e.g., nonlinearities, heteroskedasticity, state-dependent noise) the

"best case" weights are good approximations for the true weights. Even though the bias can go in either direction,

that does not matter for the hypothesis testing procedure. Using a simulation of the first specification of DGP (7)

with structural shock x t , Figure 10 plots the case of zt = sgn(x)(x + u)2 where u is normally distributed, mean-0

noise with conditional variance .012(1+ x2)). If we run local projections using zt and plot the weights as if zt = x t ,

the true weights are similar. The indicator function structure constrains deviations; out of several combinations

tried, this was about as ugly as it got. One specific area of concern is the true weights are putting much more

weight on shocks on the "wrong sign". But the consequences are limited to being less robust to false negatives.23

23This is another reason to use disjoint indicators. While it forces all coefficients to put some weight on the wrong sign, the values of ϵt
where "wrong-sign weight" is placed will be the same (within the coefficient group). If we allow for overlap, we could have one coefficient with
much more wrong-sign weight than the rest, and we can’t know if it’s an issue without the exact form of measurement error.
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Figure 10: Selected Simulation of DGP (7) with Measurement Error

Finally, one issue that was not highlighted in the previous discussions is the issue of choosing thresholds. It’s not

ideal to have to mandate when a small shock becomes big etc. The first step to address this is to first standardize

the data and then make the partitioning based on data realities. The threshold for magnitude in positive shocks

need not be the same as for negative shocks. That should give an inkling as to a reasonable baseline to set, and

then robustness exercises could involve moving this threshold around to see if results are sensitive to cutoffs.

Interestingly, Figure 4 shows that while it feels like indicator functions involve setting paradoxical thresholds,

there is a significant amount of weight overlap, so this is actually not as much of an issue. In fact, to decrease the

amount of false negatives, one ironic way to address this is to allow indicators themselves to overlap. For example,

the weights when using f1 = 1(ϵt < .01) and f2 = 1(ϵt < −1.5) have significantly less overlap than the disjoint

case. The tension, as mentioned before, is that this increases standard errors. On the other hand, for generated

regressors, there is no weight overlap and this paradox is unavoidable, though it can be diminished by fixing the

peak at the median of the interval instead of having to choose it beforehand as well.

28



A.2 Inherency of Negative Weight

If ϵt is a continuously distributed shock on I ⊂ R, note that24

∫

I

Cov
�

1{a≥ϵt}, f (ϵt)
�

da =

∫

I

¦

E[1{a≥ϵt} f (ϵt)]−E[1{a≥ϵt}]E[ f (ϵt)]
©

da

= E





�

f (ϵt)−E[ f (ϵt)]
�

 

∫

I t

da

!



= E
�

( f (ϵt)−E[ f (ϵt)])ϵt

�

= Cov( f (ϵt),ϵt)

where I t = {x ∈ I : x ≤ ϵt}. For a generic f (·) and g(·) (assume they are mean 0 WLOG), also notice
∫

I

Cov
�

1{a≥ϵt}, f (ϵt)
�

−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))

∫

I

Cov
�

1{a≥ϵt}, g(ϵt)
�

= Cov( f (ϵt),ϵt)−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))
Cov(g(ϵt),ϵt)

Recall from (4), the weight function on β2 from (5) will follow ω2(a) =
Cov(1{a≤ϵt }, f (ϵ)

⊥)
Var( f (ϵ)⊥) . Since f ⊥(ϵ) in this case is

f (ϵ)− Cov( f (ϵ),ϵ))
Var(ϵ) ,

∫

I ω2(a)da will be proportional to the above result when g(ϵ) = ϵ, yielding
∫

I ω2(a)da∝ 0.

Thus, if ω2(a) ̸= 0 for any a, ω2 must necessarily take on negative values.

A.3 Standard Error Corrections

The necessary corrections are stated here and the proof can be found in Online Appendix B.2. Let f1(x) be the

small, negative indicator, f2(x) be the big, negative indicator, and similarly for f3(x) and f4(x). The procedure

uses generated regressors gi = αi fi(x), where αi is the coefficient on fi in a projection of the shock x t on all the

functions (in a constant, and let the projection constant term be α0). Let t i be the t-statistic from the projection.

The point estimates of interests are coefficient sums, for which the variance is Varβi + Varβ j + 2Covβi ,β j .

Because the gi functions are generated regressors, correction terms should be added, and then take a square root

to deliver proper standard errors. Each point estimate will have 3 correction terms for each of the 3 parts of the

coefficient sum. For the variances,
β2

i

t2
i

should be added. For the off-diagonal term, it’s 2
β̃i β̃ j

αiα j
Cov(αi ,α j), where

|Cov(αi ,α j)| is actually just Var(α0). These corrections will typically be negligible.

A.4 Unpacking the Weight Form

Recall the general form from (4) in Section 2

ωi =
Cov(1a≤ϵt

, X⊥i )

Var(X⊥i )

where X⊥i is the residual from regressing X i on the other elements in Xt . We can unpack this definition to get

things soley in terms of covariances and variance of terms of Xt , which amounts to an expansion of the FWL

theorem. To my knowledge, this expansion has not been done previously and for good reason – the full form

amounts to several messy recursions that offer absolutely no insight to write out. However to motivate the use of

24This holds in the interior of I , see Kolesár and Plagborg-Møller (2025) Lemma 3 and Caravello and Martínez Bruera (2024) Lemma 1.
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deep learning to address one of the central issues in this paper, it may be useful to see why it’s difficult to conjure

up functional forms that will produce appropriate weighting.

For what follows, consider X to be a generic matrix of N covariates in a regression (which can include a vector

of 1s) and X i to be its i-th element. Keeping with notation from earlier, X⊥i is the residual from X i on the remaining

elements of X . WLOG, we will initially look at an example where i = 1. Further consider X⊥1
n to be regressing the

n-th element of X on its the remaining parts excluding X1. Then

X⊥1 = X1 −
N
∑

n=2

Cov(X1, X⊥1
n )

Var(X⊥1
n )

Xn

We can keep unpacking these terms but it should be clear that indexing is quickly going to become a nightmare

because the "exclusions" will not be in a consistent ordering across the components (and sub-components, and

sub-sub-components,...) of this summation. Things would have already got a bit messy notation wise had we done

a formula for a generic X⊥i . So we will have to break this up into several parts. The details are tedious, so they are

relegated to Online Appendix C.1. Those details allow us to explicitly write out the N = 4 special case of interest.

Recall that the setting of interest is including functions { fi(ϵt)}4i=1 in a regression, where ϵt is a shock. The weights

ωi(a) in βi (corresponding to the i-th function) are

ωi(a) =

C1,i −
∑

j ̸=i C1, j
Ci, j−

∑

k ̸= j

Ci,k C j,k
Vk

Vj−
∑

k ̸= j

C2
j,k

Vk

Vi −
∑

j ̸=i

C2
1, j−2Ci, j

∑

k ̸= j

Ci,k C j,k
Vk

+
∑

k ̸= j

C2
i,k C2

j,k

V2
k

Vj−
∑

k ̸= j

C2
j,k

Vk

where Ci, j denotes the covariance between fi and f j , C1,i is the covariance between 1(ϵt≥a) and fi , and Vi is the

variance of fi . This N = 4 case is actually simple compared to the sprawling recursions of the general case.The

representation above also implicitly assumes the functions are mean 0, which need not be the case.

As made explicit at the beginning of Section 3, the goal is to pick functions so that ωi(a) are non-negative,

relevant (don’t put weight where we don’t want), and hump-shaped. The inscrutable form above makes deep

learning a natural solution to the complex function search in the case where we allow the functions to potentially

be correlated.
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A.5 More Application Results

Figure 11: Indicator Function Approach with MP1 Shocks

Figure 12: Indicator Function Approach with MP1 Shocks
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