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Abstract

A common approach to estimate the effects of macroeconomic policy is to use a time series of plausibly exogenous
policy changes ("shocks") in a linear regression framework. This pairing can be powerful: under standard
identification assumptions, linear methods estimate a weighted average of a shock’s true marginal effects, even
when the effects are arbitrarily non-linear. The price of a vanilla regression’s lack of sensitivity is a black box,
as one point estimate cannot reveal where and to what extent nonlinearities exist. I show how to exploit the
mechanics of local projection and develop specifications to jointly test if marginal effects have sign and size
dependence. Using monetary policy shocks as an application, I find persistent nonlinearities in US data that

cannot be replicated by a New Keynesian model with asymmetric rigidities in price and wage setting.
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1 Introduction

Many of the most important advances in economics amount to progress in the struggle to identify and estimate
the effects of policy. A large literature surveyed in Ramey (2016) and Montiel Olea et al. (2025) has sought to
circumvent the eternal endogeneity problem by constructing time series of plausibly exogenous shifts in policy
("shocks") through various identification strategies. Recent work by Rambachan and Shephard (2025) and Kolesar
and Plagborg-Mgller (2025) looks "under the hood" of these efforts and underscores their potential power: simple
Jorda (2005) local projections (LP) or vector autoregressions (VAR) estimate a weighted average of a shock’s true
marginal effects, even if there are arbitrary nonlinearities. The precedent for the "weighted average" interpretation
comes from well-known results in microeconometrics (e.g., Imbens and Angrist, 1994), but its utility has been
revived for macroeconomists thanks to assumptions researchers are willing to make about these policy shock series.
Kolesar and Plagborg-Mgller (2025) demonstrate if the shock series is indeed independent of the other components
of an outcome variable’s data generating process, the weights themselves can be easily estimated and will also be
non-negative, meaning we can recover estimates of causal effects.

Though a regression of y,,, on x, can remarkably estimate a weighted average of a possibly non-linear
object of interest, this does not help answer whether nonlinearities exist to begin with. Even though we have an
approximation for the weights on x,, the marginal effects at x, are still unknown. The properties of marginal effects
are important. Linear models are popular in macroeconomics for their transparent dynamics and computational
efficiency, but this simplicity comes with a cost. Optimal policy in a linear world often amounts to just pushing
hard enough on the right instruments, but in practice policymakers must constantly confront diminishing returns
to intervention (e.g., "pushing on a string" in Fisher, 1935). Other than comparing linear estimation to some
non-linear benchmark, there’s no formally established, straightforward procedure to test if nonlinearities are
present in policy transmission. Some attempts have been made to gauge non-linear behavior with intuitively
specified local projections, but Caravello and Martinez Bruera (2024) show the lack of explicit econometric backing
can lead to incorrect inference.’

This paper presents a method to detect size effects (disproportionate impact of big and small shocks) and sign
effects (asymmetry of positive and negative shocks) in data. The approach extends the work of Rambachan and
Shephard (2025) and Kolesar and Plagborg-Mgller (2025) by showing that if the right functions of x, are included
in a local projection, the corresponding weights will have properties that allow for testing for sign and size effects.
In related work, Caravello and Martinez Bruera (2024) show several properties of weights in LPs and show it’s easy
to conflate sign and size. They recommend two independent series of regressions that will separate sign and size
effects if the shock’s distribution is symmetric. This paper’s approach allows for joint testing of sign and size with

the same separation result, while also being less sensitive to the shock’s distribution and offering more appealing

1Some examples of using LP to assess nonlinearities can be found in Tenreyro and Thwaites (2016); Ascari and Haber (2022); Alessandri
et al. (2025) for monetary policy shocks and Ramey and Zubairy (2018); Ben Zeev et al. (2023) for government spending shocks.



finite sample properties (e.g., speed of weight convergence) and interpretability. The proposed framework is also
related to semiparametric estimation with prespecified weight functions (see Kolesar and Plagborg-Mgller (2025)
for an overview), but given data limitations common in macroeconomic settings, it’s convenient to have a stripped
down procedure with a similar objective.

Formally, the purpose of the paper is to show what functional regressors have the best weighting properties to
detect nonlinearities in LPs. The basis for this task is implicit regression weights depend only on the shock (not the
outcome variable), so the goal is to find specifications placing weight in the desired parts of a shock’s support.
Broadly, if we consider 4 types of shocks along the dimensions of big vs. small and positive vs. negative, there
should be 4 corresponding coefficients in the regression. "Corresponding" in this context means including just
the right combinations of regressors so that, for example, the regression weights w(e) on the big, positive shock
coefficient are only non-zero for ¢ sufficiently large. Appropriate weighting justifies labeling f3; ; with combinations
of i = {big, small} and j = {positive, negative}. Testing for nonlinearities is then a simple task: for size effects, the
null hypothesis is By;g ; = Bsman,; and for sign effects it’s f; ,os = B; neg- An advantage is coefficient differences may
be significant even if the underlying point estimates aren’t.

For implementation, a naive starting point of disjoint indicator functions turns out to be a safe way to carry
out the procedure: under an arbitrary shock distribution, there will be no false positives in population estimates
and the weights converge quickly in finite samples. Ideally, we would like to also be robust to false negatives
and avoid having to set fixed thresholds for defining a "big" shock (i.e., the paradox of the heap).? I also provide
more general ways to construct functional regressors with desirable properties, but given the sample sizes in most
settings, simple indicator functions may often be the best choice. Similar limitations arise for trying to expand the
list of categories from big vs. small and positive vs. negative, but making these generalizations more tractable
could be fruitful explorations in future research.’

For readers solely interested in applying these methods, Section 4 gives an implementation guide and an
illustration with monetary policy shocks. I find nonlinearities for all variables generally peaking in the medium
to long-run, with firmest indications for size effects for both positive and negative shocks and sign effects in big
shocks. Barnichon and Matthes (2018) find opposing sign effects for unemployment and inflation and broadly
conjecture that a New Keynesian model with asymmetric adjustment costs in price and wage setting (Kim and
Ruge-Murcia, 2009) should be able to deliver whatever size and sign effects are found. I use a Metropolis-Hastings
routine to estimate the Aruoba et al. (2017) extension of the model and confirm certain parametrization can deliver
various nonlinearities on impact but they quickly vanish. This disconnect lends support to Friedman (1960)’s "long
and variable lags", but in an era where central banks don’t exert control over monetary aggregates (Cochrane,

2024), it’s not clear what mechanism would yield such a transmission path.

2"One grain of sand is not a heap of sand, two grains of sand is not a heap of sand,..., one million grains of sand is a heap of sand"
3A promising new strand of literature has tried to make progress on estimating state, size, and sign dependent effects (Barnichon and
Matthes, 2018; Gongalves et al., 2024). General non-linear estimation is difficult and often sensitive to misspecification (White, 1980).



2 Current Paradigm

2.1 Environment

Consider an arbitrary data generating process (DGP) 1)}, : R x RX — R for an outcome variable Y at time t +h
Yern = Y Sean) (@)

Here, ¢, is the structural shock of interest at time t and S,,, is "everything else" in the system, which could
for instance include the information set at time t as well as leads and lags of €, (and other shocks). Following
Rambachan and Shephard (2025) and Kolesar and Plagborg-Mgller (2025), the working definition of a shock,
with respect to a DGP of the form in (1), is that it satisfies ¢, L S;,, Yh = 0. In that case, note that the conditional
mean my(a) = E[Y,(a,S¢+n)|e, = al is equal to the average structural function ¥;,(a) = E[y,(a, S¢4n)]-

Now we turn to the estimands of interest. For a group of N functions { fl-(-)}li\]:1 and control set W,, suppose

we regress Y, on {1, { fi(st)}?:l , W, } The specification is

Yo =a+pifile)+- 4 Byfule) + 7' Wi +upyy, (2)

=a+p'X, +7 W, +ug,

where X, is a concatenation of { fl-(et)}l.zl. If €, is a shock and continuously distributed on an interval I C R,

Kolesar and Plagborg-Mgller (2025)’s Proposition 1 can be extended to show that

Bi = J w;(a) - my(a)da 3
I
3 COV(I{GSEt},XiL)
with wi(a) = TX}) 4

where X ll is the residual from projecting the ith element of X, on the remaining N — 1 elements.* Because ¢, is a
shock, estimands are a weighted average of ¥, (-), the data generating process’s true marginal effects. In Appendix
A.4, the Frisch-Waugh-Lovell truncation is expanded to provide more explicit closed form solutions.

Estimands are a weighted average of marginal effects that can be arbitrarily non-linear, but estimation is a black
box with output that sheds no light on the existence of nonlinearities, namely size effects (disproportionate impact
of big and small shocks) and sign effects (asymmetric impact of positive and negative shocks). This representation
also contrasts with a "unit change" interpretation of regression, as each f3; is a weighted average of the same object
(marginal effects of ¢,, not f;(¢,)). So picking functions for inclusion in (2) boils down to weight engineering.
Several more implications of (3) and (4) are explored in the paper. (i) the weights only depend on ¢, but may not
if &, is not a shock (ii) if we instead use a proxy z, in place of ¢, (if &, is not observable), the weights still depend

on ¢, (iii) the estimand’s form says nothing about the finite sampling properties of an estimator f3;.

4And a constant. Also need { fl-(st)}iil s.t rank condition holds, as will be discussed in Online Appendix B.2. Notice the weights can be
easily estimated using a loop of OLS regressions, see Kolesar and Plagborg-Mgller (2025) for more details.



2.2 Past Efforts To Estimate and Identify Non-Linear Marginal Effects

A large literature in applied macroeconomics has tried to estimate the effects of policy (e.g., interest rates or
government spending) by using Jorda (2005) local projection or vector autoregression in conjunction with a
constructed shock series meant to represent plausibly exogenous changes (e.g., Romer and Romer, 2004). The
default is to use a completely linear structure. Relative to the framework of (2), this means the only regressors are
the shock itself (identity function) and the control set. Some work has included other functions of the shock, like
f(&) = €2, in addition to the identity function in an attempt to capture non-linear effects of shocks. Caravello
and Martinez Bruera (2024) provide a survey of many past efforts and find such specifications are sometimes

incorrectly characterized. They consider a special case of (2)
Yion = a+Prg,+ Pof (6) + YWy +upp ()
With respect to (5), they show if ¢, is a shock that follows a symmetric distribution then

(i): f(-)is even & DGP features no sign effects = f, =0

@i): f(-)is odd & DGP features no size effects = 3, =0

These results provide important clarity on past work (e.g., €2 as a regressor isn’t informative about size effects) and
a strategy to test for nonlinearities. Because these statements hold regardless of the DGP’s other properties, the
presence of sign-dependence won’t distort the detection of size-dependence and vice versa. While this separation
property is valuable, it still leaves some questions unanswered. For example, if we include f (&) = €* and reject
the null hypothesis that 8, = 0, we might feel comfortable concluding there are size effects but cannot say more.
There are many possibilities for the nature of the nonlinearity — in the extreme case, only negative shocks have size
effects (and positive shocks don’t) or vice versa. These possibilities, which we can’t distinguish between at present,
carry vastly different implications. This is also merely an identification result; it says nothing about finite sample
properties of hypothesis testing coefficients in (5). Later parts of the paper will show simulations illustrating
instances where performance may be lacking, even in ideal circumstances where the identification results hold
exactly because the shock is symmetrically distributed. As the distribution becomes more asymmetric, as is the
case for the monetary policy shock application in Section 4, their approach is less useful.

Besides a conflation of size and sign effects, some past work with specifications like (2) incorrectly ascribed
causal meaning to the estimands. Kolesdr and Plagborg-Mgller (2025) show that unless the data generating
process (1) matches the regression structure exactly, causal inference is not possible. For example, suppose we use
(5) with f(e) = 2. Unless the conditional mean of Y is a quadratic function in &, f3; +2f3,& does not have a useful
interpretation. This is because a corollary to their Proposition 1 is in specification (5), there must be negative
weight placed on 3, (see Appendix A.2 for a proof). In general, specifications that include functions of ¢ as

regressors cannot be used to estimate causal effects (White, 1980) but are rather a means to detect nonlinearities.



In sum, linear regression is a surprisingly powerful tool for estimating non-linear marginal effects of a shock.
The important qualifier is estimates represent an approximation to a weighted average across a shock’s entire
support. While the weights’ form is known, underlying marginal effects are not; in other words Z{W w;-m;=pis
still one equation with M unknowns. Recovering the exact marginal effect of a given value of ¢ is not possible,
but it is possible to test whether the marginal effect function is non-linear by augmenting linear regressions with
the proper functions. There does seem to be room to expand past approaches along the extensive margin (i.e.,
what kinds of nonlinearities) which may even open the door to statements about the intensive margin (i.e., how
non-linear). The rest of the paper will focus on how to use linear regression to be more descriptive about the types

of nonlinearities that exist in a DGP

2.3 An Illustration of The Problem

The objective of Section 2 is to describe the status quo as concisely as possible, which thus far mostly involved

extending the analysis of more technical papers like Rambachan and Shephard (2025) and Kolesar and Plagborg-

Cov(Liage, ) X7)

Mgller (2025). But what it means to have a weighting scheme Varc D)

is not obvious, so an example is useful.

Under the following DGP®

kx? ifx>0

n, =c(x.)+ BE[7m,1]+¢&] where sf ~ U[—a,a], & ~ H(0, 0?), c(x) = (6)
0 oW

d
X, = €,
note that E,[7,,;] will be a constant. So a regression of 7, on x,, or functions of x,, should be revealing. Because

of the simple structure, we might expect a specification of
Example 1: Te=a+Byx 1 <o+ Boxe- 150+

to perform well in estimating marginal effects. In the context of the previous discussion, the logic is the following:
(3) showed regression estimands are weighted averages, so shouldn’t weight only be placed where the indicator
functions are equal to 1 (active)? But this is not the case. Using the form in (4) we can plot the weights. Figure 1a
shows that while the aggregate weight where the indicators are not active is indeed 0, this is only because there is
positive and negative weight that cancels out. For the estimand on y - 1,., there is no issue because marginal
effects are 0 where the indicator is not active. However, /3\1 will not converge to 0 unless marginal effects are
constant for x > 0 (i.e., only if b = 0,1). This result holds more generally under standard choices for the
distribution of y,. Related, another possibly surprising revelation from Figure 1a is weights are not relatively
equal across the relevant parts of the shock’s support, even though it follows a uniform distribution. In fact, the

weight plots look similar when x, follows a normal distribution. A different instinct some researchers might have

SMotivated by a basic New Keynesian model. Caravello and Martinez Bruera (2024) use a special case to illustrate their separation result,
and I found tinkering with it was very helpful to understand the broader mechanics of the weights.



is to estimate positive and negative effects separately, for instance by truncating Example 1 to only estimate f3;.
Figure 1b shows this also poses an inference problem — over 30% of the weight is put on positive values when

using a standard normal shock.

(a) Uniform Shock with Example 1
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(b) Standard Normal Shock with Modified Example 1
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Figure 1

One common specification to detect asymmetry is to instead use X, itself in addition to max{xt, 0}
Example 2: T, =a+Bix,+ Ps max{xt,O} +u,

Figure 2 shows this specification can work for a symmetrically distributed shock, but only for a narrow purpose.
The right panel shows negative weights, but they serve a purpose: the estimand is the effects of positive shocks
relative to negative shocks. So if 8, = 0, there are indeed symmetric effects from a positive and negative shock.

But the left panel shows f3; has no clear interpretation; the intuitive description of this specification that "; + 3,



is the (weighted) average effect of a positive shock" does not fit. This is one reason why in the Caravello and

Martinez Bruera (2024) benchmark for nonlinearity detection for this case is based on
Example 3: T, =a+ Bix, + Pof (x,)+u,

they recommend using an even function to gauge sign effects (e.g., x2 or |x|) and an odd function (e.g., x%) to
test for size. In that case, there will be no negative weight in f3;, while the weights in 8, will look the same as in
Example 2 when testing sign effects. However, when the shock’s distribution is not symmetric, we lose the clean
separation of size and sign. Figure 3a shows that shocks of a given magnitude need not have the same weight,
which means that it’s possible positive and negative shocks of the same size have the same (absolute) effect but

B, # 0, meaning this is not a proper specification for sign effects.
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Figure 2: Standard Normal Shock with Example 2
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Figure 3a: Left Skewed Shock with Example 3
Even in the symmetric shock case, the Caravello and Martinez Bruera (2024) can have mixed results. For our
example DGB in the b =1 case, there are only sign effects. With uniform shocks, even though the structure of the

DGP is simple and the shock distribution is symmetric, the detection performance is poor with a realistic sample



size: in only 16% of 10,000 simulations with n = 300, a null hypothesis of no size effects is rejected in a level-.05
test. The performance is better with standard normal shocks, rejecting in 73% of simulations. Similarly, for b = 2
and standard normal shocks, there are now size effects for positive shocks, but the null of no size effects is not
rejected in 35% of simulations. This highlights the limited power an identification result has in finite samples.
To make the failure more transparent, Figure 3b plots the weights in the size effect specification for one of the
simulations next to its limit.® Even in the most aspirational scenario when shocks follow a well-behaved, symmetric

distribution, the weights may be far from converging.”
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Figure 3b: Standard Normal Shock with Selected Simulation of Example 3
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Another issue is interpretability. After conducting hypothesis tests on the Example 3 specification, we are still
pretty much in the dark about the underlying DGP Even if the nulls are properly rejected, we can at best operate
under the belief that positive shocks have generally larger effects than negative shocks and (in the b = 2 case) big
shocks generally have disproportionately larger effects than small shocks, but this is imprecise. At a minimum, we
should seek to get more specific than "generally".

To explicitly highlight the themes from this section:

1. Regression weighting is not obvious ex ante; researchers should always check the weights for their shock

series and specification (Kolesdr and Plagborg-Mgller, 2025).
2. Including polynomials not sufficient to gauge nonlinearity (White, 1980)
3. It’s easy to conflate size and sign effects (Caravello and Martinez Bruera, 2024)
4. Traditional approaches are sensitive to sample size and the shock’s distribution

Section 3 builds on these lessons and formalizes a path forward using indicator functions.

Here, f(x) = Lysz - (x—Xx)+ 1, 5-(x+X), where X is o away from the mean (0). Results are similar for f(x) = x3.
7The n = 300 graph in Figure 3b varies across samples. The median simulated error relative to the sum of the area in each quadrant is
20%. In the language of Caravello and Martinez Bruera (2024), we would say this is problematic because the odd weights are non-trivial.



3 Uncovering Nonlinearities

Formally, we are interested in the effects of a shock ¢, on an outcome Y,,;, for different values of &,. Section 2
showed if several functions of { fl-(st)}f\’= ; are included in the regression, f; will represent a weighted average
of the marginal effects of ¢, on Y,,;, on the region where there is non-zero correlation between the shock and

the residuals from projecting f; on everything else in the regression. This illuminates a path towards a more

N
i=1’

precise characterization of the marginal effect function. If we define disjoint regions {I;} we want to have
an estimate of weighted marginal effects on each region. At a minimum, the weights must be non-negative and
ideally they should not overlap. Caravello and Martinez Bruera (2024) show another desirable property is to make
the regions and the weights {wi(-)}ll.\’: , symmetric — if shock realizations a € I; and —a € I; satisfy w;(a) = w;(—a),
then we can compare if the marginal effect function on regions i and j is asymmetric, without results being
distorted by the effects of size. Section 3.1 shows certain indicator functions can perform relatively well for these
standards and discusses the difficulties in improvements when sample size is limited. Section 3.2 discusses the

basic implementation and Section 3.3 outlines broader best practices for working with shock series.

3.1 The Power of Indicators

Disjoint indicator functions feel like they should meet the objectives, but Section 2 revealed two necessary
conditions: not interacting the indicators with the shock and including all regions of interest. To see this, we
will add a final example with standard normal shocks. One appealing property of using regressions to detect
nonlinearities is the implicit weighting is invariant to the outcome variable. So really, we don’t need a model to

evaluate the weights, just a time series for the shock process. So when we consider
Example 4: Ty =0— ﬂsmall, neg l—xte[ﬁ,%] - ﬂbig, neg ]]-xt<% + ﬁsmall, pos ]]-xte[ﬁ,%] + ﬂbig, pos ]]-x[>% +u,

note that the weight plots in Figure 4 are the same no matter the left-hand-side outcome variable. The motivation
for this form is to set reasonable cutoffs for big and small shock magnitudes (e.g., for standard normal, x, =1 is a
standard deviation and so on). The broader structure seeks to distinguish the effects of both size (i = {big, small})
and sign (j = {positive, negative}). To test for specific size effects, the null hypothesis is By;g ; = Bsman > for sign
effects it’s B; pos = PBineg» and for general effects a joint test can be used. In over 99.9% of n = 300 simulations of
the DGP (6) using the same parameterizations as Example 3, when size or sign effects are present, the appropriate
nulls of no effect are rejected. Figure 4 shows weight plots for this specification.® The reason for the drastic
improvement in performance is evident: the weights here are much further along in converging and also are more
directly placing weight where desired.’ Still, this is not perfect — "big shock" estimates put significant weight on

smaller values. But overall it’s clearly beneficial to have everything work through a single regression, where each

8Like Figure 3a, this varies across simulations, but the variance here is concentrated exclusively at the endpoints for the big shock weights.
9Appendix A.1 provides more simulation evidence on performance relative to the Caravello and Martinez Bruera (2024) benchmark.
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region of interest has its own corresponding estimand. The point estimates themselves are also more revealing, as

taking the difference in coefficients provides an indication of how quickly a linear approximation would diverge.
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Figure 4: Standard Normal Shock with Example 4

In terms of why these indicator functions work, a formal proof of their properties can be found in Online
Appendix B.1 and B.2. Broadly, under an arbitrary shock distribution, all estimands will be the same if the DGP is
linear in the shock. In terms of disentangling the effects of size and sign, there is still a complete separation when
the shock is symmetrically distributed as in Caravello and Martinez Bruera (2024). For the non-symmetric case, if
there are no size effects, estimands on regions of the same sign will be the same, meaning size effects can also be
cleanly detected.'® Online Appendix B.3 shows that without a symmetric distribution, it is generally not possible
for any method in finite samples to distinguish between a true sign effect and positive and negative shocks having
the same kind of size effect. This procedure does provide a simple robustness check to guard against this edge
case: defining the small regions so that the weights on Bgman negs Bsmall, pos are as similar as possible.!! Besides
consulting Online Appendix B for the explicit econometric backing, the next subsection details the implementation

and tries to weave in some of the intuition for the identification proof.
3.2 Implementation
Here are the broad steps to implement this procedure

1. Define regions {I;} |

2. Exclude 0

3. Define f; to be sign(x) - 1,

4. Rescale f; by coefficient in projection of the shock on {f; zlvz 1

We will go through each step and conclude with demonstrating what can go wrong when deviating from them.

10Note that this is not the case for the Caravello and Martinez Bruera (2024) approach.
HrRobustness check" refers to how the point estimates change. Since the definitions are conditional, inference is more complicated.
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1. Define regions
This procedure can be extended to an arbitrary number of regions, but because the number of large shocks will
typically be limited, the previously discussed baseline of 4 is recommended. Needing to set a threshold for what a
"big" shock is not ideal. One thing that helps is first transforming the shock so that the set of non-zero observations
has standard deviation 1 and the entire series is mean 0. Thresholds in terms of standard deviations are simpler to
reason about. A good rule of thumb is to ex ante commit to one threshold and then to see how results change ex
post after it’s mildly perturbed in both directions.

2. Exclude 0
Including indicator functions on all possible values of a shock will result in perfectly collinear regressors. So
for the regions on either side of the real line, zero should be excluded. Shock series with lots of zero values
can run into problems for small samples (Barnichon and Mesters, 2025), but here there’s a benefit of being able
easily circumvent linear dependence. It’s good practice to exclude a small interval centered around zero as well,
especially if there aren’t many zero values. A natural question is why can’t we instead exclude some other region.

Considering the DGP from the last section, one might propose using
Example 5: me=a—P1 1y c011— B2 Lox,<1— B3 Ly ero1+Us

With respect to the use of dummy variables in microeconometrics, one might expect that estimands represent
effects relative to the excluded region. Figure 5 shows while the estimands do have a clear interpretation, in some
cases it initially seems at odds with the Example 5 specification. For each estimand f3;, say the corresponding
indicator is active on interval I;. Figure 5 shows the estimands are weighted averages of marginal effects on
the interval from the left endpoint of I; to 00.? So these objects may have some use; under a linear DGR, these

estimands will all be the same. But the weights are, with respect to the indicators they relate to, poorly targeted.
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Figure 5: Standard Normal Shock with Example 5

3. Define f;(x) = sign(x) - 1/,

f; should be an indicator of whether the shock is in a given region multiplied by the sign of the shock.?

12Because weights are negligible where ¢, has low density, weights are essentially O starting from ~ 3 standard deviations.
I3Multiplying by the sign function is not critical but is rather for ease of interpretation. Without this transformation, the sign of the estimands
on negative regions would be the opposite of average marginal effects.

12



4. Rescale f;

Notice in Figure 4 the weights do not all integrate to the same value, meaning comparing estimates could be
distorted by a scaling issue. If we rescale the coefficients by the projection of the shock on all the functions, all the
weights will integrate to 1 by construction, meaning they are both comparable and interpretable as a traditional
weighted average. Because the functions are now generated regressors, standard errors require a delta method
adjustment, but the adjustment turns out to be small in practice (see Appendix A.3 as well as the code on this
paper’s GitHub repository).'*

Where deviating from these steps can go wrong

Including the shock itself or interacting the shock with the indicator functions can lead to unexpected results. To

fix ideas, we again use DGP (6) with standard normal shocks and consider
Example 6: Te=a—P1- 1y 01— B2 Lox,<1+ B3 L1t Ba Ly efo17+ Bsxe + 1,

Figure 6 shows the resulting weights behave erratically and none of the estimands have any meaningful interpre-
tation. The weights can also behave counterintuitively if the shock is interacted with an indicator function. This is
why for any specification used, it’s always best to first simulate the weights under the simplest, standard normal
case and ensure the description of the estimation is justified. Once more, Figure 6 also highlights the disconnect
between our instinct when looking at regression coefficients as representing the effect of a unit change and what
the estimands actually imply. All estimands on functions of f (¢,) are weighted averages of the same object. The
only difference is how the weighting occurs, and it’s often not what we would expect. Online Appendix B sheds

some more light on the properties of the linear regression weights that result in this behavior.
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Figure 6: Standard Normal Shock with Example 6

The repository is located at https://github.com/paulbousquet/UncoveringNonlin
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3.3 General Best Practices

Just as slight perturbations in the local projection specification can yield vastly different results, it’s also important
to be cautious about identifying assumptions about a given shock series. The results in Section 2 rely on using
the actual structural shock ¢, in the regression. In practice, we will have some shock proxy z,. Kolesdr and
Plagborg-Mgller (2025) note that if ¢, is unobserved, the form of the weights is unknown, so plotting the weights
under the assumption that ¢, = z, provides the "best case scenario". Ideally, the proxy should indeed be a (classical)
proxy — departures from the structural shock amount to noisy measurement. But a measurement error process
can be complicated, even if induced from noise alone. Chen et al. (2011) show that the usual "attenuation bias"
relationship to estimands does not hold if the measurement error is non-linear. Appendix A.1 explores consequences
of classical measurement error and thankfully shows under a rich set of measurement error types (e.g., nonlinearities,
heteroskedasticity, state-dependent noise) the "best case" weights are good approximations for the true weights.
Even though the bias can go in either direction, that does not matter for the hypothesis testing procedure.

The more important issue is that our shock proxy may not be "clean". For example, we may only be willing to
argue a shock series satisfies independence conditional on some control set. Kolesar and Plagborg-Mgller (2025)
show in this case we lose the powerful identification results because there will generally be negative weights. If the
proxy is tied to more than one structural shock (and not accounted for), Koo et al. (2024) show inference will be
incorrect.’> A complication of the guidelines for assessing proxy quality a lack of an adequate sensitivity analysis
procedure. There’s a natural concern that certain control variables can drive results if a proxy is not a pure shock,
and to this effect Kolesar and Plagborg-Mgller (2025) recommend dropping various controls and seeing if results
change, a ubiquitous robustness check strategy. Unfortunately, these results may be misleading. In the simulations
for Appendix A.1, I find even when the outcome DGP is linear in the shock, (small sample) point estimates vary
considerably when different control sets are used. So we cannot distinguish between variation indicating sensitivity
to controls or sensitivity to sample size. This raises a broader point: another common robustness check is to redo
the main analysis with different shock proxies. But because these proxies are constructed so differently (see, e.g.,
Brennan et al. (2025); Adams and Barrett (2025) for comparisons of monetary policy shock series), in general
there’s no reason the implied weights and therefore results should be similar (McKay and Wolf, 2023). Until better
sensitivity analysis tests are available, the best strategy is to have a convincing argument ¢, ~ z,.

Once a shock series has been selected, there are other considerations for estimation. A great deal of work
has been done to clarify the differences between LP and vector autoregression (VAR). (Plagborg-Mgller and
Wolf, 2021) prove LP and VAR are asymptotically equivalent in the limit (if lag order is high enough). So even
researchers who prefer VAR estimation should run the LP analogue and plot the weights to have a better sense of

what is being estimated. While there will be finite sample differences (Li et al., 2024; Montiel Olea et al., 2024),

15For proxies with many zeros, finite sample correlation is inherent, see Barnichon and Mesters (2025) for discussion and a proposed fix.
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plotting the weights in the LP will still be informative. Borrowing from Kolesar and Plagborg-Mgller (2025)’s
example, if all the weights on a government spending shock are being placed on positive values, what estimation
is actually uncovering are the effects of spending buildups. They show this phenomenon largely holds for several
popular shock series, so it’s important, no matter the preference for LP vs. VAR, to plot the weights. Overall,
Montiel Olea et al. (2025) provides a survey on considerations for LP and VAR estimation and gives an overall
recommendation of LPs for finite sample flexibility. For the procedure outlined in this paper, there are also separate
interpretation issues, which are discussed in context of the application in Section 4.2. Online Appendix B also
discusses generalizations, constructing functions using the empirical CDF or machine learning, which I find have

more limited use with typical sample sizes in macroeconomics.

4 Application

Section 4.1 applies the guidance in Section 3.3 for choosing a monetary shock proxy. Because many great papers
and people have been committed to the topic, the discussion is specialized and may not be of interest to general
readers. Likewise, interested readers may be disappointed that some of the arguments are not fully fleshed out,
which I leave to separate work. Section 4.2 shows the nonlinearity detection results and briefly outlines an attempt

to match them with a non-linear equilibrium model.

4.1 Selecting a Monetary Shock Series

To select a series for assessing possible nonlinearities in the transmission of U.S. monetary policy, we have to
address a question for which there is surprisingly not a straightforward answer: what is a (structural) monetary
policy shock? Unless one is willing to argue that central banks have a systematic way to set rates they decide
arbitrarily to deviate from, which seems like a poor description of an institution like the Federal Reserve and
its army of economists, monetary shocks are changes in policy unanticipated by private agents. This makes the
high-frequency measures of forecast errors backed out from price changes in futures markets a natural choice.
Within the class of high-frequency measures, there are several options. Bu et al. (2021) is currently popular
because of its ability to easily handle the zero lower bound period by creating a single measure to represent shocks
across the entire yield curve. At the same time, their measure cannot be easily mapped into a candidate data
generating process, so it’s less clear what would be estimated (Brennan et al., 2025). Another issue is that because
private agents do not know perfectly the central bank’s reaction function and there may not be a single information
set for all agents, changes in futures markets may be representing combinations of multiple structural shocks,
which is a challenge. There are several measures that look at changes to expected future interest rates, rather than
the current period, and try to decompose them into "forward guidance" vs. "information shocks" (e.g., Jarocinski

and Karadi, 2020), but because these measures are estimation-specific, there is a risk that the deviation from
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structural shocks is systematic or sample-dependent, rather than pure noise. Instead, sacrificing performance
at the zero lower bound and looking at changes to the Fed’s expected change to its target in the current period
seems to be the most practical option. All concerns about the possible tangling of effects from forward guidance,
information, credibility, preferences, etc. are moot when looking at the current period because once an action is
announced, the adjustment is not a function of ambiguity about any of those things because the Fed chair has
essentially written the futures price correction in stone.'® This leads to a selection of the Jarocifiski (2024) MP1
series, originally developed by Kuttner (2001), as the proxy of choice.

Before moving on to discussing other approaches more in-depth, it should be noted there are many concerns
specific to the high-frequency series. When outcome variables are not also high-frequency, Jacobson et al. (2024)
warn of temporal aggregation bias because the Federal Reserve’s meeting calendar fluctuates and sometimes
multiple shocks occur within the same month. Absent getting better data, the best response is likely to not put
much stock in the results at the shortest horizons. Casini and McCloskey (2024) also point out that using a
narrow observation is not actually a magic identification wand, though they show the Nakamura and Steinsson
(2018) measure is relatively robust to the potential concerns. A final consideration is that these futures markets
are not fully saturated with participants, particularly during the zero lower bound period, and past work has
shown many popular high-frequency series are correlated with macroeconomic fundamentals (Miranda-Agrippino
and Ricco, 2021; Bauer and Swanson, 2023). This predictability concern has rightly been a focal point of the
recent literature (Acosta, 2023), but the results may not be as damning as they seem. Leaving aside that these
markets may be innately "inefficient", it seems more likely that these finite sample results are showing the effects
of heteroskedasticity. When there is more movement in macro fundamentals, it is more likely for central banks
to act, thus creating more variance for structural shocks. Basic heteroskedasticity itself does not significantly
disturb the utility of proxies (Section 3) but more work is needed to clarify the relationship between (endogenous)
second-moment dependence and "selection bias" (Rambachan and Shephard, 2025).

Another popular method in this literature is projection orthogonalization, or using the residuals from a linear
regression. This is the basis for Romer and Romer (2004), who represent the change in interest rates unrelated to
the Fed’s information with the residuals in a regression of changes in the federal funds rate on Fed forecasts.!” But
the residuals themselves are extremely sensitive to the estimated coefficients, and we should not have faith that
€, ~ 3, — Cochrane (2011) demonstrates this won’t occur even in the simplest case where the data generating
process is linear (a basic New Keynesian model with a Taylor Rule). Miranda-Agrippino and Ricco (2021) and
Bauer and Swanson (2023) use orthogonalization by residualizing existing measures of monetary policy shocks to
guard against claims of predictability (see Acosta (2023) for a survey). These adjustments will likewise be sensitive

to the realized OLS point estimates, which really have bite given the sample size. For instance, Bauer and Swanson

16There is risk of contamination in the few instances where there were shocks in the days before the formal announcement of the target.
17 Aruoba and Drechsel (2025) argue these forecasts don’t span the information set. They extend the methodology with text analysis.

16



(2023)’s shocks are based on a 1988-2023 monthly sample. If they had originally done this procedure in 2015, the

median percent difference in shock magnitude between the original and "updated" series would be over 100%.'8

4.2 Nonlinearities in the Effects of Monetary Policy Shocks

I look for evidence of nonlinearities in monetary policy transmission by applying the described procedure to
outcome variables of industrial production, consumer price index (CPI), consumption, and unemployment from
November 1988 to January 2020 using the MP1 series.!” I use log differences and cumulate them over future
horizons so that the left-hand side variables represent "percent change since the shock occurred". Before detailing
the inference procedure, it’s useful to first establish how to interpret point estimates. Recall within this paradigm,
we define size and sign effects in terms of coefficient differences. For size effects, the big and small estimates
will be the same (in population) if and only if marginal effects on the region where there is non-overlapping
weight are not constant. For example, a negative sign effect for big shocks and industrial production can be
interpreted as the expansionary effect for big negative shocks (on IP) is smaller than the contractionary effect from
big positive shocks. As discussed in Section 3.1, sign effects are trickier because of the difficulties in falsifying the
edge case where there are symmetric size effects (Caravello and Martinez Bruera, 2024). Ideally, sign effect tests
(Ho: Bpos—Pneg = 0) can provide an indication for or against a narrative similar to "pushing on a string" (Fisher, 1935;
Tenreyro and Thwaites, 2016); s < fpeq for output proxies indicates positive shocks have a disproportionately
larger contractionary effect relative to the expansionary effect of negative shocks.

Figure 7 shows the point estimates using penalized local projection (Barnichon and Brownlees, 2019) indicate
size effects for positive shocks and sign effects for big shocks. For all variables with the exception of CPI, larger
positive shocks have a disproportionately more contractionary effect. The sign effect plots broadly support a
"pushing on a string" story (for unemployment, the signs flip: f8,,; > B, means larger contractionary effects).

The more relevant question is whether the point estimates are meaningful indications of persistent nonlinearities.
For inference, Barnichon and Brownlees (2019) note that a downside to penalization methods is generally
complicated asymptotics, especially when using cross-validation. To over-compensate for any potential bias, I
fix the penalty parameter at a mild level ex ante and use 99% confidence intervals with a Huber-White variance-
covariance matrix from an even more under-smoothed estimate (Montiel Olea and Plagborg-Mgller, 2021). Also,
it’s tempting to think about Figure 7 through the lens of the difference between an (average) impulse to two
different types of shocks. This interpretation more so holds for sign effects, but the weighting need not be the same
for big and small shocks for the same size category (Caravello and Martinez Bruera, 2024). For a robustness check,
I find that results do not differ when the big shock regions are manipulated to have more similar weighting. For

size effects, there is weight overlap for shock regions of the same size. So we can instead interpret those plots as

185ims (1998) cautions against scrutinizing shock magnitudes in VARs, which are relative to a given information set. The concern here is
distinct. Again, &, ~ z, means the bias should be from systematic measurement noise (so shouldn’t be mechanically sample-dependent).
9More details can be found in Online Appendix D.4.
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Figure 7: Indicator Approach with MP1 Shocks

how fast a linear approximation diverges. Appendix A.5 features the remaining visualizations. In particular, there
is evidence big negative shocks have a more expansionary effect in the long run than small shocks (Figure 11). For
sign effects, not much can be said about asymmetries for small shocks (Figure 12).

The nonlinearities are therefore statistically meaningful, but there’s a point to be made about whether they
are economically meaningful. For example: suppose marginal effects for positive shocks are 8 and for negative
shocks 3 + €. A population hypothesis test will reject a null hypothesis of linearity, even though a linear model
is appropriate. Because the indicator functions are normalized so that their individual weights integrate to 1,
coefficient differences can give some insight into whether the degree of nonlinearity matters because they have a
reasonable interpretation as a difference in means. For the application in this section, this translates to measuring
the nonlinearity in terms of difference in percentage change in outcome since the shock occurred. Referencing
Figure 7 confirms the economically significant effects.?’

Overall, a picture is painted that is hard to square with standard models: nonlinearities that peak in the
medium to long run. The next step after finding results like this is to try and explain them. To compare to the
results from US data, a basic point of reference would be using a model that features meaningful nonlinearities to
generate data and then run the same regressions. Barnichon and Matthes (2018) conjecture that sign effects that
work in opposite directions for unemployment and inflation, which is what we observed in the last section, can

be rationalized in a model with downward-rigid prices and wages (Kim and Ruge-Murcia, 2009). In this setting,

20To avoid haggling over what constitutes meaningful nonlinearity, one option is to normalize by the linear estimate’s standard deviations, so
coefficient differences are still in units of effect sizes but in some sense have an interpretation similar to t-statistics (i.e., gesturing towards the
likelihood parameters were drawn from the same distribution). Results are also more easily comparable to DSGE model output by minimizing
unimportant scaling distortion from finite sample properties of time series and model-simulated data. Details are in Online Appendix D.6.
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firms seeking to change their price at a rate different from steady-state inflation face an adjustment cost

_

®(m,) = e

(=) 44, (= 7Y 1)

For ¢, > 0, it’s more costly to decrease prices than raise them (downward-rigid), for v, < 0 prices are upward-
rigid, and the function limits to symmetric adjustment costs as ¢, — 0. Nominal wage adjustment costs take on
the same structure. Past estimation of this model has found evidence of downward rigidity in prices and wages,
consistent with empirical evidence dating back to Keynes (1936) and Tobin (1972).

Since the relevance for this paper is largely motivation, I relegate most details about the model and the
estimation to Online Appendix D.5. Using the same sample period of US data, the Aruoba et al. (2017) extension
of the downward-rigidity model is estimated to second order via a standard random walk Metropolis-Hastings
algorithm and particle filter (Fernandez-Villaverde and Rubio-Ramirez, 2007). I use the distribution of parameters
generated by this exercise to simulate data and run the same local projections procedure to create Bayesian
analogue (i.e., using credible sets instead of confidence intervals) for the empirical results. These exercises show
(full results in Online Appendix D.5) that while the model can generate nonlinearities, in general the observed
asymmetric effects for both size and sign occur on impact and then quickly dissipate. I also take the posterior
mode of all parameters and then vary both asymmetry parameters (one at a time, in both directions, and then
both at once in the same direction) while keeping everything else fixed, then simulate data and estimate for each
combination. This exercise provides some clarity: on impact, certain combinations of the asymmetry parameters
can generate any desired nonlinearities, but it cannot be sustained.

Looking at the impulse response functions directly from the model (rather than running a LP) corroborates the
above interpretations. Figure 8 shows impulse responses for both negative and positive shocks of different sizes.
By a horizon of 5 periods after the shock, the magnitude of responses is near or below zero. Online Appendix D.5
discusses various extensions to the model, like adding autocorrelated shocks, that ultimately don’t help much.

One reason why the effects of monetary shocks may not have a lasting effect is the lack of inertia in interest
rate setting. Even though the Metropolis-Hastings produced draws with moderately high persistence in the Taylor
Rule (posterior mode of p, & .67), an inspection of model-simulated data reveals that whenever a large monetary
shock takes the central bank away from its (nominal) target i*, it generally doesn’t take long to get back. Table 1
in Online Appendix D.5 shows the results of 10,000 simulations at the posterior mode. For each simulation, I take
the median distance between the target interest rate and the current interest rate h periods after a big change in
interest rates (magnitude greater than 10%) and then average across simulations. In periods in which the central
bank heavily adjusts the interest rate, the target is relatively far away, but this is almost completely undone 2
periods later. There is also a large asymmetry on impact that quickly becomes less dramatic. Regardless of model,
consecutive, large realizations of white noise innovations are unlikely, but the staying power of shocks can vary.

These results suggest that the nonlinearities observed in data may not have an explanation in our standard class
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of models and warrant further exploration of channels in monetary policy transmission. There should also be
some broader considerations added in model selection. Linearized general equilibrium models, appealing because
of a reduction of analytical and computational complexity, can output suboptimal normative prescriptions if the

economy actually follows a data generating process with strong non-linear components.

5 Conclusion

This paper demonstrates a new method to test for nonlinearities in data exploiting properties of least squares
regression that are consequences of assumptions about proxies for structural shocks that are commonly made in
the applied macroeconomics literature. Three new approaches within this framework were characterized, but
the simplest (disjoint indicator functions) seem to be the most useful in practice. While this seems to be yet
another example of the power of OLS in spite of its simplicity, there are some limitations setting the table for future
work. There is a tension that emerges between making the weights appear in the desired places and the efficiency
of estimates. The disjoint indicator functions are the most efficient option at the expense of having relatively
dispersed weight. So while we can view coefficient differences as a good gauge of deviations from linearity, we
cannot interpret the estimands themselves as weighted averages of marginal effects on the areas the indicator
functions are active (they are weighted averages over a larger region). It seems possible to expand along this
dimension, but it’s not immediately clear how. The procedure informed an application to monetary policy shocks,
which showed results that are difficult to match even with a general equilibrium model that featured rich size and

sign nonlinearities. Results like this can inform paths forward for better understanding the transmission of policy.
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Appendix?!

A.1 Simulation Performance

This section will assess performance across a variety of data generating processes. The DGP in (6) from Example 3
and Example 4 gives a benchmark for the prevailing takeaway from this section. For the case of b = 2 with
standard normal shocks (and sample size n = 300), a deep learning approach only offers a modest improvement
over the Caravello and Martinez Bruera (2024) approach, failing to reject a null hypothesis of no size effects
in 26% of simulations. The generated regressor approach fares even worse, correctly rejecting in only 60% of
simulations — the methods developed to produce fewer false negatives failed to do so. This is because, while the
weights look more appealing (see Online Appendix B.6), the variance of the coefficients limits the usefulness of
this property. Online Appendix B discusses two alternatives. For the generated regressor approach, the functions
corresponding to big shocks in particular have large variance, in part because less of the sample is concentrated
there. For deep learning, the idiosyncrasies the neural network creates to respect the constraint set (see Online
Appendix B.4) also create more variance. And to re-emphasize — these occur even with DGP (6), which outside of
a single kink, is about as vanilla as it gets (outcome driven entirely by two i.i.d shocks with no autocorrelation).
This is an indication that disjoint indicator functions should be the default method of choice, though it’s still useful
to report results from all.

One last, previously omitted case to discuss before moving on from DGP (6) is b = .5 (square-root). While the
indicator functions perform the best in this environment, nulls are not rejected in nearly 40% of cases, with the
other methods performing far worse. This presents a stark limitation — an important nonlinearity of economic
interest would be diminishing returns to scale of policy intervention. However, these are intrinsically harder to
detect, as the second derivative of the square-root function is essentially constant after moving away from 0. This
is an unfortunate downside the framework is not as well-equipped to handle.

To get a more holistic picture of performance, we now consider a richer class of data generating processes. In
particular, Li et al. (2024) assess the finite sample tradeoffs between local projections and vector autoregressions
by making thousands of random selections of 5 variables from the Stock and Watson (2018) dataset and fitting
a dynamic factor model to create a DGP (and back out the structural shocks). I use this as a starting point and
compare all the above methods against a multitude of flavors for DGP Because each DGP has its own structural
shock, it’s not feasible to train a neural network on each one. I find the point estimates are very similar to the
disjoint indicator approach, which is not surprising given the functional forms it consistently converges to are
broadly well-approximated by combinations of indicator functions and linear functions.

I modify a threshold-VAR model from Loria et al. (2025) who argue it captures some fundamental macroeco-

nomic dynamics. The structure is centered around 3 components: growth of real activity y,, a financial factor

21The Online Appendix can be found in the paper’s GitHub repository https://github.com/paulbousquet/UncoveringNonlin
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f:>» and a macroeconomic factor m,. I keep this same system of 3 equations but add inflation 7, and additional
fundamentals W,. I use the Stock and Watson (2018) dataset and randomly select a series from the relevant group
of variables for y,, f;, m,,and , and randomly select other variables from the remaining categories for W,. The
procedure detailed in Li et al. (2024) is used to generate a structural monetary policy shock X, for this system

using a dynamic factor model representation. The skeleton of the threshold-VAR DGP is

Ye = Bo+ Pife + Bom, + P, + B, Wy +ul

fe=agt+aifiq+asm+asg(x,) L(fiq,me 1)+ u{ ™

m, =yo+y1meq +vafiog +738(x) - L (fe—p, me—q) +ui
where g(x,) is some non-linear function of the shock and 1,.(f,_;, m,_;) is a state-dependent multiplier. In the
baseline calibration, I set 1,(f,_;, m,_;) = 3 if the financial and macroeconomic factors are both negative and equal
to 1 otherwise. I estimate the other parameters in this model using g(x,) = x, and omitting the state-dependence.
Then I simulate a time series for y,, f,, and m, using (7) with a few different choices for g(-) and the data for =,
and W,. For each choice of g(+), I run several local projections at horizon h = 0 for the different approaches for
detecting nonlinearities. The LPs have 196 observations and include 4 lags of all variables except W,, which is not
included at all to mimic the presence of omitted variables. The results are averages across 100 variations of (7)
with 10,000 simulations each. Inference is performed with Huber-White standard errors (Montiel Olea et al., 2024)
and results are materially the same using more involved estimations of the variance-covariance matrix (Xu, 2023).

Figure 9 plots the power of hypothesis tests using the indicator function approach and the even/odd weight
decomposition of Caravello and Martinez Bruera (2024) across 3 specifications for the non-linear shock function
g(x,) that feature both size and sign effects. The point of the plots is to show how power changes as we scale a
component of g(-) by 8. With a foundation of ¢ - 1,5, + x - 1, ., the first specification has the first term scaled
by 60, likewise for the second specification and the second term. This can be thought of as two ways of adjusting
a jump then plateau of effects. The third specification is §x?- 1,5 + x - 1,..?*> The shock is standardized and
the cutoff ¢ is set to 1 in the DGP. Across simulations, the structural shocks follow a roughly but not perfectly
symmetric distribution, making the even/odd approach a valid choice ex-ante.

The plots show that the indicator function approach strictly dominates the even/odd decomposition, though the
gap is decreasing in the size of these specific nonlinearities. The Caravello and Martinez Bruera (2024) procedure
mostly dominates the generated regressor approach for the different parameterizations, so it’s excluded for clarity.
The indicator function approach has the advantage of insignificant coefficients not being the end of the story; the
estimates may be different enough that a null of linearity can be rejected. In principle, this advantage should

extend to the generated regressors, but their unconventional construction clearly leads to even more inefficiency.

22The first two specifications were selected to give all methods as difficult task, with the third being a more traditional non-linear structure.
The results for the first two specifications are similar if we multiply x through their corresponding g(-).
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Difference in Power: Indicators vs. Even/Odd Approach

Specification 1 Specification 2 Specification 3
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Size for the indicator function approach refers to a rejection of the null hypothesis that the coefficient on the big, positive shock and the small, positive shock are the same. Sign refers to a rejection
that the big, positive and big, negative coefficient is the same. Even/Odd are simple significance tests of the coefficient on f(x).
Figure 9

In every previous simulation, we have assumed the structural shock ¢, is perfectly observed. This will obviously
not be the case in practice. As mentioned in Section 2, if the structural shock is not observed, the weights are
unknown. Assuming that a proxy z, is in fact the structural shock represents the ceiling on estimation quality.
But this says nothing about how useful what we’re actually estimating is. Kolesdr and Plagborg-Mgller (2025)
show that if controls are needed for identification, we cannot have any faith in what we’re estimating unless the
propensity score is linear. Instead, the proxy should indeed be a proxy in a classical sense — departures from
the structural shock amount to noisy measurement. This is merely a conjecture; measurement error itself can
be complicated, even if induced from noise alone. Chen et al. (2011) show that the usual "attenuation bias"
relationship to estimands does not hold if the measurement error is non-linear. Thankfully, I find in simulations that
under a rich set of measurement error types (e.g., nonlinearities, heteroskedasticity, state-dependent noise) the
"best case" weights are good approximations for the true weights. Even though the bias can go in either direction,
that does not matter for the hypothesis testing procedure. Using a simulation of the first specification of DGP (7)
with structural shock x,, Figure 10 plots the case of z, = sgn(x)(x +u)? where u is normally distributed, mean-0
noise with conditional variance .01%(1 + x?2)). If we run local projections using z, and plot the weights as if z, = x,,
the true weights are similar. The indicator function structure constrains deviations; out of several combinations
tried, this was about as ugly as it got. One specific area of concern is the true weights are putting much more

weight on shocks on the "wrong sign". But the consequences are limited to being less robust to false negatives.?

23This is another reason to use disjoint indicators. While it forces all coefficients to put some weight on the wrong sign, the values of &,
where "wrong-sign weight" is placed will be the same (within the coefficient group). If we allow for overlap, we could have one coefficient with
much more wrong-sign weight than the rest, and we can’t know if it’s an issue without the exact form of measurement error.
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True Weights vs. ”Best Case”
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Figure 10: Selected Simulation of DGP (7) with Measurement Error

Finally, one issue that was not highlighted in the previous discussions is the issue of choosing thresholds. It’s not
ideal to have to mandate when a small shock becomes big etc. The first step to address this is to first standardize
the data and then make the partitioning based on data realities. The threshold for magnitude in positive shocks
need not be the same as for negative shocks. That should give an inkling as to a reasonable baseline to set, and
then robustness exercises could involve moving this threshold around to see if results are sensitive to cutoffs.
Interestingly, Figure 4 shows that while it feels like indicator functions involve setting paradoxical thresholds,
there is a significant amount of weight overlap, so this is actually not as much of an issue. In fact, to decrease the
amount of false negatives, one ironic way to address this is to allow indicators themselves to overlap. For example,
the weights when using f; = 1(¢, < .01) and f, = 1(¢, < —1.5) have significantly less overlap than the disjoint
case. The tension, as mentioned before, is that this increases standard errors. On the other hand, for generated
regressors, there is no weight overlap and this paradox is unavoidable, though it can be diminished by fixing the

peak at the median of the interval instead of having to choose it beforehand as well.
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A.2 Inherency of Negative Weight

If €, is a continuously distributed shock on I C R, note that**

JCOV(I{QZEr},f(st))da:J {E[10e, f ()]~ ElLse ) JELf ()]} da
I

I

=E | (f(e))—E[f(e)]) (J

I

da) =E[(f (e.) —ELf (¢ )], ] = Cov(f (¢), &)

where I, = {x € : x < ¢,}. For a generic f(-) and g(-) (assume they are mean 0 WLOG), also notice

Corlr (8D (o1 o)) = Conlf (o), ) — U L)

Var(g(e)) I Var(g(¢)) Cov(g(e,), &)

chv(l{azgr},f(st))—
I

Cov(1iaes,).f (6)*)
Var(f (e)+)

, fl w,(a)da will be proportional to the above result when g(¢) = ¢, yielding fI wy(a)da o< 0.

Recall from (4), the weight function on 8, from (5) will follow w,(a) = . Since f1(¢) in this case is

Cov(f(¢).€))
f (8) 7 Var(e)

Thus, if w,(a) # 0 for any a, w, must necessarily take on negative values.

A.3 Standard Error Corrections

The necessary corrections are stated here and the proof can be found in Online Appendix B.2. Let f;(x) be the
small, negative indicator, f,(x) be the big, negative indicator, and similarly for f;(x) and f,(x). The procedure
uses generated regressors g; = a, f;(x), where a; is the coefficient on f; in a projection of the shock x, on all the
functions (in a constant, and let the projection constant term be a,). Let t; be the t-statistic from the projection.

The point estimates of interests are coefficient sums, for which the variance is Var f3; + Var §; + 2 Cov 3;, f3;.
Because the g; functions are generated regressors, correction terms should be added, and then take a square root
to deliver proper standard errors. Each point estimate will have 3 correction terms for each of the 3 parts of the
coefficient sum. For the variances, /f—j should be added. For the off-diagonal term, it’s 23—5’/ Cov(a;, a;), where

| Cov(a;, a;)| is actually just Var(a,). These corrections will typically be negligible.

A.4 Unpacking the Weight Form

Recall the general form from (4) in Section 2

Cov(1,<, ,X)
W= ————
Var(X;")
where X f is the residual from regressing X; on the other elements in X,. We can unpack this definition to get
things soley in terms of covariances and variance of terms of X,, which amounts to an expansion of the FWL

theorem. To my knowledge, this expansion has not been done previously and for good reason — the full form

amounts to several messy recursions that offer absolutely no insight to write out. However to motivate the use of

24This holds in the interior of I, see Kolesar and Plagborg-Mgller (2025) Lemma 3 and Caravello and Martinez Bruera (2024) Lemma 1.
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deep learning to address one of the central issues in this paper, it may be useful to see why it’s difficult to conjure
up functional forms that will produce appropriate weighting.

For what follows, consider X to be a generic matrix of N covariates in a regression (which can include a vector
of 1s) and X; to be its i-th element. Keeping with notation from earlier, X f is the residual from X; on the remaining
elements of X. WLOG, we will initially look at an example where i = 1. Further consider X #1 to be regressing the
n-th element of X on its the remaining parts excluding X;. Then
xt=x,— S —Cov(xl’f’%l)x
n=2 Var(X n 1)

We can keep unpacking these terms but it should be clear that indexing is quickly going to become a nightmare
because the "exclusions" will not be in a consistent ordering across the components (and sub-components, and
sub-sub-components,...) of this summation. Things would have already got a bit messy notation wise had we done
a formula for a generic X f So we will have to break this up into several parts. The details are tedious, so they are
relegated to Online Appendix C.1. Those details allow us to explicitly write out the N = 4 special case of interest.
Recall that the setting of interest is including functions { fi(gt)}f:1 in a regression, where ¢, is a shock. The weights
w;(a) in B; (corresponding to the i-th function) are

Cij= ks %

Cl,i - Zj;ei Cll,j 2,
Vit Vi

w;(a)=

2 o2

CiCs 2, c?
2 _ ik>jk ik jk
Ci; ZCi,jZk#j Ve +Zk#j V2

Vi— Zj;éi a2
Vi—Xs

where C; ; denotes the covariance between f; and f;, Cy ; is the covariance between 1, .y and f;, and V; is the
variance of f;. This N = 4 case is actually simple compared to the sprawling recursions of the general case.The
representation above also implicitly assumes the functions are mean 0, which need not be the case.

As made explicit at the beginning of Section 3, the goal is to pick functions so that w;(a) are non-negative,
relevant (don’t put weight where we don’t want), and hump-shaped. The inscrutable form above makes deep
learning a natural solution to the complex function search in the case where we allow the functions to potentially

be correlated.
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A.5 More Application Results

Negative Shock Size Effect (A%)
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Figure 11: Indicator Function Approach with MP1 Shocks
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Figure 12: Indicator Function Approach with MP1 Shocks
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