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Abstract

A common approach to estimate the effects of macroeconomic policy is to use a time series of plausibly exogenous

policy changes ("shocks") in a linear regression framework. This pairing can be powerful: Kolesár and Plagborg-

Møller (2025) show linear methods can estimate a weighted average of a shock’s true marginal effects, even

when the effects are arbitrarily non-linear. The price of a vanilla regression’s lack of sensitivity is a black box,

as one point estimate cannot reveal where and to what extent nonlinearities exist. I show how to exploit the

mechanics of least-squares regression and develop specifications to jointly test if marginal effects have sign and

size dependence. Using monetary policy shocks as an application, I find persistent nonlinearities in US data that

cannot be replicated by a New Keynesian model with asymmetric rigidities in price and wage setting.

*Department of Economics, University of Virginia, pbousquet@virginia.edu. I thank Rachel Childers and Eric Young for helpful comments.
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1 Introduction

Imbens and Angrist (1994), Yitzhaki (1996), and Angrist et al. (2000) show simple regression estimands are a

weighted average of true underlying marginal effects. As usual, further work showed this remarkable result is not

a free lunch. The "weights" in this averaging do not have a straightforward interpretation and the result breaks in

many standard settings (Masten, 2025). The implicit weights can also be negative, opening the door for the worst

case scenario in causal inference: the regression estimand could have the opposite sign as marginal effects, so our

estimates will be wrong no matter how much data we have (Small et al., 2017; Goldsmith-Pinkham et al., 2024).

While the particulars of the credibility revolution were being ironed out in microeconometrics, pure least-

squares regression became more popular in macroeconomics thanks to Jordà (2005) local projection (LP), often

used to estimate a shock’s macroeconomic effects using a constructed shock proxy (e.g., Romer and Romer, 2004).

Rambachan and Shephard (2021) and Kolesár and Plagborg-Møller (2025) revitalize the weighted average result

with analogous propositions for LP and vector autoregression (VAR) that hold under commonly assumed conditions

for these shock series. Kolesár and Plagborg-Møller (2025) also make a pragmatic point that while the regression

weights aren’t readily interpretable, they are easily estimatable. By digging into the mechanics of these weights,

they show a vanilla linear regression is in general a much better tool to recover non-linear effects than specifications

that explicitly try to capture nonlinearities (e.g., by including x2 as a regressor). This is because, unlike a standard

local projection, non-linear regression is sensitive to misspecification (White, 1980).

Though inference is clean in a standard linear regression on a shock, Kolesár and Plagborg-Møller (2025) note

their work cannot indicate if nonlinearity exists, an important consideration for modeling in Macro. One gauge

of a model’s match to data are impulse response functions (IRFs), which depend on a shock’s size α and time

since it occurred h. Linear models have separable IRFs: f (α, h) = αg(h), ruling out nonlinearities like size effects

(disproportionate impact of big and small shocks) and sign effects (asymmetry of positive and negative shocks).

Caravello and Martínez Bruera (2024) demonstrate how to (separately) test for size and sign effects in data. They

focus on ensuring testing for size nonlinearities is not contaminated with traces of sign nonlinearities (and vice

versa), but their identification result and method is sensitive to the distribution of the shock. The approach also

cannot jointly account for size and sign effects (i.e., how size-dependence differs for positive and negative shocks)

and is limited by relying on pure significance tests, which may be inherently unrevealing given the large variance

of local projection estimates (Li et al., 2024).

This paper builds on past work looking carefully "under the hood" of regressions and presents a method to

jointly identify size and sign nonlinearities in data. The procedure exploits that implicit regression weights depend

only on the shock (not the outcome variable) and seeks out specifications placing weight in the desired parts of

a shock’s support. Broadly, if we consider 4 types of shocks along the dimensions of big vs. small and positive

vs. negative, the goal is to have a regression with 4 corresponding coefficients. "Corresponding" in this context
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means including just the right combinations of regressors so that, for example, the regression weights ω(ϵ) on the

big, positive shock coefficient are only non-zero for ϵ sufficiently large. Appropriate weighting justifies labeling

βi, j with combinations of i = {big, small} and j = {positive,negative}. Testing for nonlinearities is then a simple

task: for size effects, the null hypothesis is βbig, j = βsmall, j and for sign effects it’s βi,pos = −βi,neg. An advantage is

coefficient differences may be significant even if the underlying coefficients aren’t.

Formally, the purpose of the paper is showing what functional regressors have the best weighting properties to

detect nonlinearities. A naive starting point of disjoint indicator functions turn out to be a safe way to carry out the

procedure: under an arbitrary shock distribution, there will be no false positives in population estimates and the

weights converge quickly in finite samples. To retain this feature while adding robustness to false negatives, we

have to confront the tangled mapping between functions and their weights. Weights can be expressed compactly

using Frisch–Waugh–Lovell (c.f., "regression anatomy" in Angrist and Pischke (2009)), but really they are complex

combinations of second moments, so it’s not obvious how to get the weighting we want. It’s not even obvious

exactly what we want because setting a definitive threshold for a "big" shock is an impossible task (i.e., the paradox

of the heap).1 Rather than adhering to a strict threshold, we can plot the weights generated by the inclusion of

candidate regressors and decide ex post if it’s sufficient (Kolesár and Plagborg-Møller, 2025). I show two methods

of constructing functions with good weighting properties, each with their own appeal: orthogonal generated

regressors (closed-form and easy to extend beyond 4 shock types) and deep learning (don’t vary with sampling).

Given the sample sizes in most settings, simple indicator functions may often be the best choice.

I also synthesize recent work on local projections to form an implementation guide. This includes selection

criteria for the vast array of structural shock proxies and some notes of caution about potential misuses of indicator

functions in regressions. I apply these recommendations to assess the effects of monetary policy shocks on U.S.

fundamentals and find nonlinearities for all variables generally peaking in the medium to long-run, with firmest

indications for size effects for both positive and negative shocks and sign effects in big shocks. Barnichon and

Matthes (2018) find similar sign effects using unemployment and inflation and conjecture they can be rationalized

by a New Keynesian model with asymmetric adjustment costs in price and wage setting (Kim and Ruge-Murcia,

2009). I use a Metropolis-Hastings routine to estimate the Aruoba et al. (2017) extension of the model and find

these nonlinearities do appear on impact but quickly vanish. This disconnect lends support to Friedman (1960)’s

"long and variable lags", but in an era where central banks don’t exert control over monetary aggregates (Cochrane,

2024), it’s not clear what mechanism would yield such a transmission path.

1"One grain of sand is not a heap of sand, two grains of sand is not a heap of sand,..., one million grains of sand is a heap of sand"
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2 Current Paradigm

2.1 Environment

Consider an arbitrary data generating process (DGP) gh : R×RL → R for an outcome variable Y at time t + h

Yt+h = gh(ϵt ,St+h) (1)

Here, ϵt is the structural shock of interest at time t and St+h is "everything else" in the system, which could

for instance include the information set at time t as well as leads and lags of ϵt (and other shocks). Following

Rambachan and Shephard (2021) and Kolesár and Plagborg-Møller (2025), the working definition of a shock,

with respect to a data generating process of the form in (1), is that it satisfies ϵt ⊥ St+h ∀h≥ 0. In that case, note

that the conditional mean E[gh(a,St+h)|ϵt = a] can be written as mh(a) for some function mh(·).

Now we turn to the estimands of interest. For a group of N functions
�

fi(·)
	N

i=1 and control set Wt , suppose

we regress Yt+h on
n

1,
�

fi(ϵt)
	N

i=1 , Wt

o

. The specification is

Yt+h = α+ β1 f1(ϵt) + · · ·+ βN fN (ϵt) + γ
′Wt + ut+h (2)

= α+β ′Xt + γ
′Wt + ut+h

where Xt is a concatenation of
�

fi(ϵt)
	N

i=1. If ϵt is a shock and and continuously distributed on an interval I ⊂ R,

Kolesár and Plagborg-Møller (2025)’s Proposition 1 can be extended to show that

βi =

∫

I

ωi(a) ·m′h(a)da (3)

with ωi(a) =
Cov(1{a≤ϵt}, X⊥i )

Var(X⊥i )
(4)

where X⊥i is the residual from projecting the ith element of Xt on the remaining N − 1 elements.2 Thus, the

estimands can be described as a weighted average of the data generating process’ true marginal effects. In Appendix

A.4, the Fresh-Waugh-Lovell truncation is expanded to provide more explicit closed form solutions.

Estimands are a weighted average of marginal effects that can be arbitrarily non-linear, but estimation is a

black box with output that sheds no light on the existence of nonlinearities, namely size effects (disproportionate

impact of big and small shocks) and sign effects (asymmetric impact of positive and negative shocks). A more few

things to take stock of before proceeding. Notice the weights (4) only depend on ϵt . This of course will not hold if

ϵt is not actually a shock (it will also depend on the control set Wt ). In addition, if we instead use a proxy zt in

place of ϵt (if ϵt is not observable), the weights still depend on ϵt . Also, the estimand’s form says nothing about

the finite sampling properties of an estimator bβi . These issues will be discussed at length in the next section.

2And a constant. Also need
�

fi(ϵt )
	N

i=1 s.t rank condition holds, as will be discussed in Proposition 1. Notice the weights can be easily
estimated using a loop of OLS regressions, see Kolesár and Plagborg-Møller (2025) for more details.
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2.2 Past Efforts To Estimate and Identify Non-Linear Marginal Effects

A large literature in applied macroeconomics has tried to estimate the effects of policy (e.g., interest rates or

government spending) by using Jordà (2005) local projection or vector autoregression in conjunction with a

constructed shock series meant to represent plausibly exogenous change (e.g., Romer and Romer, 2004). The

default is to use a completely linear structure. Relative to the framework of (2), this means the only regressors are

the identity function of the shock and the control set. Some work has included other functions of the shock, like

f (ϵ) = ϵ2, in addition to the identity function in an attempt to capture non-linear effects of shocks. Caravello

and Martínez Bruera (2024) provide a survey of many past efforts and finds such specifications are sometimes

incorrectly characterized. They consider a special case of (2)

Yt+h = α+ β1ϵt + β2 f (ϵ) + γ′Wt + ut+h (5)

With respect to (5), they show if ϵt is a shock that follows a symmetric distribution then

(i): f (·) is even & DGP features no sign effects =⇒ β2 = 0

(ii): f (·) is odd & DGP features no size effects =⇒ β2 = 0

These results provide important clarity on past work (e.g., ϵ2 as a regressor isn’t informative about size effects)

and provide a clear strategy to test for nonlinearities. Because these statements hold regardless of the DGP’s other

properties, the presence of sign-dependence won’t distort the detection of size-dependence and vice versa. While

this separation property is valuable, it still leaves some questions left unanswered. For example, if we include

f (ϵ) = ϵ3 and reject the null hypothesis that β2 = 0, we might feel comfortable concluding there are size effects

but cannot say more. There are many possibilities for the nature of the nonlinearity – in the extreme case, only

negative shocks have size effects (and positive shocks don’t) or vice versa. These possibilities, which we can’t

distinguish between at present, carry vastly different implications. This is also merely an identification result; it

says nothing about finite sample properties of hypothesis testing coefficients in (5). Later parts of the paper will

show simulations illustrating instances where performance may be lacking, even in ideal circumstances where the

identification results hold exactly because the shock is symmetrically distributed. As the distribution becomes more

asymmetric, as is the case for the monetary policy shock application in Section 4, their approach is less useful.

Related, the procedure is relatively inflexible, as the best choices for f (·) are the same across shock series (ex ante).

Because of sample size restrictions and the variety of distributions ϵt could follow, this is a notable limitation.

Besides a conflation of size and side effects, some past work with specifications like (2) incorrectly ascribed

causal meaning to the estimands. Kolesár and Plagborg-Møller (2025) show that unless the data generating process

(1) matches the regression structure exactly, causal inference is not possible. For example, suppose we use (5) with

f (ϵ) = ϵ2. Unless the conditional mean of Y is a quadratic function in ϵ, β1 + 2β2ϵ is not a consistent estimate

for the average marginal effects of ϵ. This is because a corollary to their Proposition 1 is in specification (5),
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there must be negative weight placed on β2 (see Appendix A.2 for a proof). In general, specifications that include

functions of ϵ as regressors cannot be used to estimate causal effects (White, 1980) but are rather a means to detect

nonlinearities. In contrast, the form of (3) shows simply using a linear specification will consistently estimate a

positively weighted average of the true average marginal effects. There’s perhaps a counterintuitive takeaway

from the above: we often think of regressions as measuring the effect of a "unit change", but the statement only

applies in full to predicted values. For example, if we project yt on ϵt and also yt on 1ϵt≥0, both estimands are an

average of the same object (marginal effects of ϵt on yt) – the difference is the weights in this averaging. The next

section will unpack the relationship between functional regressors and their weights.

In sum, linear regression is a surprisingly powerful tool for estimating non-linear marginal effects of a shock.

The important qualifier is estimates represent an approximation to a weighted average across a shock’s entire

support. While the weights’ form is known, underlying marginal effects are not; in other words
∑M

i ωi ·m′i = β is

still one equation with M unknowns. Recovering the exact marginal effect of a given value of ϵ is not possible,

but it is possible to test whether the marginal effect function is non-linear by augmenting linear regressions with

the proper functions. There does seem to be room to expand past approaches along the extensive margin (i.e.,

what kinds of nonlinearities) which may even open the door to statements about the intensive margin (i.e., how

non-linear). The rest of the paper will focus on how to use linear regression to be more descriptive about the types

of nonlinearities that exist in a DGP.

2.3 An Illustration of The Problem

The objective of Section 2 is to describe the status quo as concisely as possible, which thus far mostly involved

extending the analysis of more technical papers like Rambachan and Shephard (2021) and Kolesár and Plagborg-

Møller (2025). But what it means to have a weighting scheme
Cov(1{a≤ϵt },X

⊥
i )

Var(X⊥i )
is not obvious, so an example is useful.

Under the following DGP3

yt = ϵ
d
t , πt = c(yt) + βEt[πt+1] + ϵ

s
t where ϵd

t ∼U [−a, a], ϵs
t ∼N (0,σ2), c(y) =















κy b if y > 0

0 o.w
(6)

note that Et[πt+1] will be a constant. So a regression of πt on yt , or functions of yt , should be revealing. Because

of the simple structure, we might expect a specification of

Example 1: πt = α+ β1 yt · 1yt≤0 + β2 yt · 1yt>0 + ut

to perform well in estimating marginal effects. In context of the previous discussion, the logic is the following:

(3) showed regression estimands are weighted averages, so shouldn’t weight only be placed where the indicator

3Motivated by a basic New Keynesian model. Caravello and Martínez Bruera (2024) use a special case to illustrate their separation result,
and I found tinkering with it was very helpful to understand the broader mechanics of the weights.
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functions are equal to 1 (active)? But this is not the case. Using the form in (4) we can plot the weights. Figure 1

shows that while the aggregate weight where the indicators are not active is indeed 0, this is only because there is

positive and negative weight that cancels out. For the estimand on y ·1y>0, there is no issue because marginal

effects are 0 where the indicator is not active. However, bβ1 will not converge to 0 unless marginal effects are

constant for y > 0 (i.e., only if b = 0,1). This result holds more generally under standard choices for the

distribution of yt . Related, another possibly surprising revelation from Figure 1 is weights are not relatively equal

across the relevant parts of the shock’s support, even though it follows a uniform distribution. In fact, the weight

plots look similar when yt follows a normal distribution.

Figure 1: Uniform Shock with Example 1

Next, the Caravello and Martínez Bruera (2024) benchmark for nonlinearity detection for this case is based on

Example 2: πt = α+ β1 yt + β2 f (yt) + ut

The success of the framework varies widely by how it’s parameterized. For our example DGP, in the b = 1 case,

there are only sign effects. With uniform shocks, even though the structure of the DGP is simple and the shock

distribution is symmetric, the detection performance is poor with an realistic sample size: in only 16% of 10,000

simulations with n= 300, a null hypothesis of no size effects is rejected in a level-.05 test. The performance is

better with standard normal shocks, rejecting in 73% of simulations. Similarly, for b = 2 and standard normal

shocks, there are now size effects for positive shocks, but the null of no size effects is not rejected in 35% of

simulations. This highlights the limited power an identification result has in finite samples. To make the failure

more transparent, Figure 2 plots the weights in the size effect specification for one of the simulations next to its

limit.4 Even in the most aspirational scenario when shocks follow a well-behaved, symmetric distribution, the

weights may be far from converging.5

4Here, f (y) = 1y≥y · (y − y) +1y≤−y · (y + y), where y is σ away from the mean (0). Results are similar for f (y) = y3.
5The n = 300 graph in Figure 2 varies across samples. The median simulated error relative to the sum of the area in each quadrant is 20%.

In the language of Caravello and Martínez Bruera (2024), we would say this is problematic because the odd weights are non-trivial.
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Figure 2: Standard Normal Shock with Selected Simulation of Example 2

Another issue is interpretability. After conducting hypothesis tests on the Example 2 specification, we are still

pretty much in the dark about the underlying DGP. Even if the nulls are properly rejected, we can at best operate

under the belief that positive shocks have generally larger effects than negative shocks and (in the b = 2 case) big

shocks generally have disproportionately larger effects than small shocks, but this is imprecise. At a minimum, we

should seek to get more specific than "generally".

Finally, we can preview the ultimate strategy outlined in Section 3 by looking at similar approaches that don’t

work. There are two common approaches for incorporating indicator functions into regressions. One strategy is

to just include indicator functions on their own. For the application where we are using indicator functions of a

shock ϵt , we have established that if ϵt is included in the regression, there must be some negative weighting in

the estimands on the indicator functions. But some may conjecture that in this case, the negative weights have a

purpose. To fix ideas, we again use DGP (6) with standard normal shocks and consider

Example 3: πt = α+ β1ϵt + β2 ·1−yt∈(0,1] + β3 ·1yt<1 + β4 ·1yt∈[0,1] + ut

1yt>1 is excluded for collinearity (otherwise we would have linearly dependent regressors). We might intuitively

expect negative weights to be a necessary component to estimate effects relative to 1yt>1. Because estimands are

weighted averages of the same object (mh(·) in Section 2.1), a coefficient difference βi − β j is equivolent to one

object β̃ =
∫

I ω̃(a)mh(a)da where ω̃(a) =ωi(a)−ω j(a). By the same token, we might expect that the weights

in the specification in specification Example 3 take on a similar form. In the ideal case, the weights in βi (for

i = 2,3,4) are positive when the corresponding indicator function is equal to 1 and are negative when ϵt > 1.

This would support the earlier described interpretation as these coefficients being "effects in region i relative to

the excluded region". Figure 3 shows this is not the case. While the weights in β1 (the coefficient on ϵt) take on a

possibly useful form where weight is more evenly dispersed throughout the shock’s support, the indicator function

weights are erratic and frequently negative. Had we instead used "negative indicators" (i.e., codomain of {−1, 0},
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rather than {1, 0}), the indicator weights would be reflected across the x-axis (and thus substantially reduce the

presence of negative weights), but those estimands are not of any more use. Section 3 and Appendix A.1 shed

some more light on the properties of the linear regression weights that result in this behavior.

Figure 3: Standard Normal Shock with Example 3

Again, Figure 3 highlights the disconnect between our instinct when looking at regression coefficients as representing

the effect of a unit change and what the estimands actually imply. All estimands on functions of f (ϵt) are weighted

averages of the same object. The only difference is how the weighting occurs, and it’s often not what we would

expect. Similarly, if we modify Example 3 by removing ϵt , the results might also be surprising. Instead using

Example 4: πt = α− β2 ·1−yt∈(0,1] − β3 ·1yt<1 − β4 ·1yt∈[0,1] + ut

Figure 4 shows we no longer have negative weights, which makes sense ex post given the removal of ϵt . At the

same time, this means we still cannot describe what we’re estimating as average marginal effects relative to the

excluded indicator region. The estimands now do have a clear interpretation, but in some cases it initially seems at

odds with the Example 4 specification. For each estimand βi , say the corresponding indicator is active on interval

Ii . Figure 4 shows the estimands are weighted averaged of marginal effect on the interval from the left endpoint of

Ii to∞.6 So these objects may have some use; under a linear DGP, these estimands will all be the same. But the

weights are, with respect to the indicators they relate to, poorly targeted. Proposition 1 in Section 3 will formalize

why this happens. The ultimate revelation is it matters significantly what indicator region is "excluded". Because

structural shock proxies often have many 0 values, it will make sense to instead exclude a small region around 0.

This is because there will be enough excluded probability mass to not have linearly dependent regressors while at

the same time enforcing that indicators on one sign of the real line don’t put significant weight on the other.

6Because weights are negligible where ϵt has low density, weights are essentially 0 starting from ≈ 3 standard deviations.
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Figure 4: Standard Normal Shock with Example 4

Another use of indicator functions would be to interact them with a shock as in Example 1

Example 5: πt = α+ ϵt

�

β1 + β2 ·1−yt∈(0,1] + β3 ·1yt<1 + β4 ·1yt∈[0,1]

�

+ ut

Figure 5 shows we don’t recover a "effect relative to the excluded region" interpretation.7 β4 is a slight exception,

but there is still weight placed for shock values less than 0. The weights in β3 follow the clearest pattern, but do

not allow the effects of size and sign nonlinearities to be disentangled (Caravello and Martínez Bruera, 2024).

Figure 5: Standard Normal Shock with Example 5

Overall, one needs to take care when using including indicator functions in any form for a regression. In addition,

"exploiting" negative weights is difficult. In the case of Caravello and Martínez Bruera (2024), the weight

cancellation underlying their identification result may not occur in finite samples, even with a symmetric shock.

For indicator functions, the weights do not follow a straightforward pattern, so it seems more reasonable to focus

on estimating positively-weighted averages. Section 3 builds on these lessons and formalizes a path forward.

7Excluding ϵt as a regressor only exacerbates the issues with Example 5.
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3 Uncovering Nonlinearities

Section 3.1 explicitly lays out ideal criteria for functional regressors to satisfy for nonlinearity testing. Section 3.2

demonstrates that disjoint indicator functions do a surprisingly good job but have some limitations. Section 3.3

and 3.4 show alternative methods: orthogonal generated regressors and deep learning. Section 3.5 compares all

methods while also highlighting how some practical concerns (e.g., measurement error) affect estimation.

3.1 Objective

Formally, we are interested in the effects of a shock ϵt on an outcome Yt+h. Recall from (4) if a collection of

shock functions { fi(ϵt)}Ni=1 is included in a regression, the weights in the estimand on fi are ωi(a) =
Cov(1{a≤ϵt }, X⊥i )

Var(X⊥i )
,

where the superscript ⊥ denotes a projection residual à la Frisch-Waugh-Lovell. Suppose ϵt is a shock continuously

distributed on I ⊂ R. The explicit objective is to find functions { fi}Ni=1 corresponding to a partition {Ii}Ni=1 of I

with their weights {ωi}Ni=1 satisfying the following targets

• (no negative weight) ωi(a)≥ 0 ∀a ∈ I

• (relevant weight) ωi(a)> 0 =⇒ a ∈ Ri , where Ii ⊂ Ri

• ("hump-shaped") ∃ a peak c ∈ Ii s.t ω′i(a)≥ 0 on (−∞, c] and ≤ 0 otherwise

From the second tenet, we say fi "corresponds" to Ii if weight is only placed in a predefined region Ri nesting Ii .

As discussed in the introduction, it’s hard to mix qualitative categorizations of interest (e.g., "big, positive shocks")

with quantitative cutoffs. The most practical way to define Ri is to set a boundary where there is definitely no

correspondence. For example, if a function is designated to capture the effects of big, positive shocks, a reasonable

baseline would be that no weight is placed on shocks less than 1 standard deviation away from its mean.8

The rest of this section will give 3 approaches for satisfying the targets and then compare them. An intuitive

guess of disjoint indicator functions turns out to work well. To try to do even better, two other approaches,

orthogonal generated regressors and deep learning, are discussed. But as seen in the simulation evidence and

Section 4, sample size limitations restrict the gains for moving to the more technical approaches.

3.2 Disjoint Indicator Functions

Disjoint indicator functions feel like they would hit the weighting targets, but Section 2 revealed two necessary

conditions: not interacting the indicators with the shock and including all regions of interest. To see this, we

will add a final example with standard normal shocks. One really nice property of using regressions to detect

nonlinearities is the implicit weighting is invariant to the outcome variable. So really, we don’t need a model to

8So Ri = {a ∈ I |a > 1} if the shock is standardized. Once Ri is set, choices for the partitioning of I follow naturally.
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evaluate the weights, just a time series for the shock process. So when we consider

Example 6: πt = α− βsmall, neg ·1−yt∈[
1

100 , 5
4 ]
− βbig, neg ·1yt<

5
4
+ βsmall, pos ·1yt∈[

1
100 , 5

4 ]
+ βbig, pos ·1yt>

5
4
+ ut

note that the weight plots in Figure 6 are the same no matter the left hand side outcome variable. The motivation

for this form is to set reasonable cutoffs for big and small shock magnitudes (e.g., for standard normal, yt = 1 is a

standard deviation and so on). The broader structure seeks to distinguish the effects of both size (i = {big, small})

and sign ( j = {positive,negative}). To test for specific size effects, the null hypothesis is βbig, j = βsmall, j , for sign

effects it’s βi,pos = −βi,neg, and for general effects a joint test can be used. In over 99.9% of n = 300 simulations of

the DGP (6) using the same parameterizations as Example 2, when size or sign effects are present, the appropriate

nulls of no effect are rejected. Figure 6 shows weight plots for this specification.9 The reason for the drastic

improvement in performance is evident: the weights here are much further along in converging and also are more

directly placing weight where desired. Still, this is not perfect – "big shock" estimates put significant weight on

smaller values. But overall it’s clearly beneficial to have everything work through a single regression, where each

region of interest has its own corresponding estimand. The point estimates themselves are also more revealing, as

taking the difference in coefficients provides an indication of how quickly a linear approximation would diverge.

Figure 6: Standard Normal Shock with Example 6

So now to put Figure 6 in a bigger context: Section 2 discusses the identification result of Caravello and Martínez

Bruera (2024), which is essentially that if the shock is symmetric, a population hypothesis test with their proposed

specifications will have no false positives. Disjoint indicator functions can achieve the same property under any

shock distribution, as well as more descriptiveness about the type of nonlinearity and confidence about false

positive robustness in finite samples. We can formalize all the above into a proposition.

9Like Figure 2, this will vary across simulations, but the variance here is concentrated exclusively at the endpoints for the big shock weights.
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Definition. Call a collection of disjoint intervals
�

Ii

	N

i=1 a sign partition (of R) if there exists O0 (which we can

call the center set) such that 0 ∈ O0, O0 ∪
�

∪N
i=1 Ii

�

= R, and O0 ∩
�

∪N
i=1 Ii

�

is measure zero.

Definition. Call a collection of indicator functions
�

fi(x t)
	N

i=1 a normalized collection on a sign partition
�

Ii

	N

i=1

if their concatenation X f
t has full rank, x ∈ Ii⇐⇒ fi(x) ̸= 0, and a normalization:

• x < 0 and fi(x) ̸= 0 =⇒ fi(x) = −1

• x > 0 and fi(x) ̸= 0 =⇒ f (x) = 1.

Also recall the earlier notation: f ⊥i (ϵt) are the residuals in a projection of fi(ϵt) on { fk(ϵt)}Nk ̸=i and a constant.

Proposition 1. Suppose ϵt is a continuously distributed shock on I ⊂ R and Yt+h follows a data generating process of

the form (1) satisfying the conditions of Kolesár and Plagborg-Møller (2025) Proposition 1. Let mh(a) be the mean of

Yt+h conditional on ϵt = a. For a normalized collection of indicator functions
�

fi(ϵt)
	N

i=1 on sign partition
�

Ii

	N

i=1

with center set O0, define
�

gi(ϵt)
	N

i=1 by gi(x) = αi fi(x), where αi =
Cov(ϵt , f

⊥
i (ϵt ))

Var( f ⊥i (ϵt ))
, and let Xt be their concatenation.

If we project Yt+h on Xt (and a constant and control set as in (2)), then βi = β j ∀i, j if mh(·) is linear in ϵt .

Let Si j = O0 ∪ Ii ∪ I j . βi = β j for i ̸= j if mh(·) is linear in ϵt on
�

inf{Si j}, sup{Si j}
�

∩ I .

In plain terms: if the DGP is linear on the space where the weights on βi and β j are non-zero, then βi = β j . The

statement of the result is a bit technical because of a couple subtle points. Notice that the total weight for big and

small shocks of the same sign in Figure 6 is not comparable. So we might be concerned the results are distorted by

a scaling issue. Of course, the functions can easily be rescaled, but this scaling is sample dependent so in principle

a more direct correction is needed. Indicator functions turn out to have a very easy correction that boils down to a

two-stage estimator. The other piece is what regions the indicator functions can be active. Disjoint intervals are

not necessary but it makes stating the result easier. Ironically, letting intervals overlap in general allows for a more

targeted statement of where nonlinearities exist because the region where weight is placed actually shrinks. More

discussion is in the rest of the paper and Appendix A.1, as well as a fuller proof.

To sketch out the rest of the result, it’s perhaps most instructive to show why Example 1 didn’t work, which has

similar structure but 2 functions: f1(y) = y ·1y<0 and f2(y) = y ·1y>0. For the estimand on f1, the weights follow

ω1(a)∝ Cov(1a≤yt
, X⊥i ), with X⊥1 = f1(y)−E[ f1]−

Cov( f1, f2)
Var( f2)

( f2(y)−E[ f2]).

Even when a > 0, and the indicator is not active, these weights will vary significantly (and eventually turn negative)

because they have a term −Cov(1a≤yt
, yt ·1yt>0). But the solution is not as simple as dropping the interaction;

notice in Example 6, the indicator functions used a lower bound of .01 because a collinearity problem emerges as

the floor approaches 0. So if Example 1 had instead used f1(y) = −1y<−b and f2(y) = y ·1y>b, for some small b

bounded away from 0, the weights (and X⊥1 ) would not have the same problematic term because if we project f1

on {1, f2}, the projection constant and coefficient have the same magnitude (i.e., X⊥1 = −1yt<−b − β(11yt>b
− 1)).
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This is mechanical and occurs even in finite sample estimation. So the sample analog of Cov(1a≤yt
, X⊥1 ) will be a

sum of terms that are non-zero only if the "irrelevant" indicator 1y>b is inactive. Even on the interval [−b, b], we

have a guarantee of non-negative weights because Cov( f1, f2) = −E[ f1]E[ f2] > 0. So incredibly, these disjoint

indicator functions guarantee non-negativity and relevance and the seemingly innocuous choice to interact them

with the shock makes these nice properties go away. The tacit importance of the center set O0 should also not be

overlooked. In Example 5, the center set was essentially (1,∞), and as a result each estimand placed weight in

that region. Relegating inconvenient weight to a slice around the origin allows allows for more targeted hypothesis

testing and general interpretation.

Besides the implications for hypothesis tests, this structure is appealing because coefficient differences can be

informative about the extent of the nonlinearity in practice. Underlying Proposition 1 is that the implied weights

when using indicator functions will be non-negative. In the linear case where marginal effects are constant (m), a

weighted integral will always be m multiplied by "total weight". So two estimands meaningfully differ only if there

is heavy nonlinearity, provided total weight is the same. As with Proposition 1, the converse is not true; βi ,β j

being similar does not imply a lack of nonlinearity. But this approach still possibly allows for something to be said

about the intensive margin. One thing to keep in mind for this interpretation is that as n→∞, a hypothesis test

will always reject a null hypothesis that two estimates are the same even if the difference is negligible. Section 4

gives some ways to gauge if the estimates of coefficient differences are qualitatively meaningful.

While the false positive result is valuable, there is a risk of false negatives because of weight overlap. There’s

no reason to think the best of both worlds is impossible, but no alternatives immediately come to mind. To do this,

the form of the regression weights must be confronted directly. They can be represented compactly with the help of

the Frisch–Waugh–Lovell Theorem, but as detailed in Appendix A.4, they are more precisely a complex non-linear

combination of the shock’s variance and the covariances of
�

fi(·)
	N

i=1. We can conceptualize our objective as

picking functions to minimize deviations from the weight targets subject to what one might call cross-equation

restrictions the functions must abide by. Our two paths forward are either to make these dependencies somehow

not matter or use a complex procedure that somehow respects them. The rest of this section will detail two

approaches, orthogonal generated regressors and deep learning, one for each path.

First, we can target collections of functions that are uncorrelated with each other. This simplifies the problem

tremendously and also makes transparent how to make the weights hit the targets. However, the simplicity comes

at the expense of having functions that vary by sample because they are defied in terms of a shock’s empirical

distribution. Ideally, we would choose a set of fixed functions that perform well across simulations. But this is

only possible if we lift the 0 correlation restriction, opening the door to inscrutable dependencies across function.

This creates a problem suitable for deep learning, which can finesse through the entanglement constraints to yield

the weighting we want. Both approaches have appeal and will be given a detailed treatment. One tension that

will emerge is a tradeoff between specificity and variability. Take the earlier example with f1(y) = −1y<−b and
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f2(y) = y · 1y>b, which again involves some weight placed on [−b, b]. But we can’t simply take this floor to 0

to get rid of the unwanted weight because of collinearity, and milder relaxations themselves will cause standard

errors to grow. There is a parallel difficulty with moving away from the indicator functions. I find that, under

realistic sample sizes, the push to reduce false negatives may come at too high of a cost to standard errors (and

thus not be able to say anything). Since limitations will be setting-dependent, they are still worth exploring.

3.3 Orthogonal Generated Regressors

Again consider the premise of a shock ϵt with functions of the shock { fi(ϵt)}Ni=1 included in a regression on Yt .

If the functions are uncorrelated and mean 0, the weight form (4) simplifies to

ωi(a) =
Cov(1{a≤ϵt}, fi(ϵt))

Var( fi(ϵt))

Suppose ϵt follows distribution F with support I and the collection { fi}Ni=1 corresponds to a partition {Ii}Ni=1 of I .

If fi ̸= 0 only on Ii , the weights will have no overlap – ω j(a)> 0 for only one j. A strict no overlap requirement is

not one of the weight targets, but if we restrict ourselves to collections of uncorrelated mean 0 functions, it’s easy

to construct a collection satisfying our objectives from the ground up. First, note that for any mean 0 function

Cov(1{a≤ϵt}, fi(ϵt)) =

∫ ∞

a

fi(x)dF(x).

The next step is to find N functions, staying within this class, producing weights that are non-negative, relevant, and

hump-shaped. The expression above shows a clear route to satisfaction. WLOG, consider the interval Ii = [0, 1].

For a fixed c ∈ (0, 1), ϵt has probability mass F(c)− F(0) on [0, c] and mass F(1)− F(c) on [c, 1]. Consider10

fi(a) =











0 a /∈ [0, 1]
−[F(c)− F(0)]−1 a ∈ [0, c)
[F(1)− F(c)]−1 a ∈ (c, 1]

This function abides by our constraint and targets:

• It’s mean 0 (expected value of 0 on [0, 1] and it’s exactly 0 everywhere else) and will inherently be uncorrelated

with other functions defined the same way for all of {Ii}Ni=1.

• The weights are non-negative, relevant, and hump-shaped.
∫∞

a fi(x)dF(x) is increasing initially at a = 0 as

the area with only negative values shrinks, then begins to decrease once the area with only positive values

shrinks. Eventually, it hits the boundary and becomes 0.

• It can also easily be modified to be smooth or scaled so that
∫

I ωi(a)da = 1.

10The has some precedent in applications of the Haar wavelet (Mallat, 1999).
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We can also directly interpret the estimands as positively-weighted averages of marginal effects on Ii . There

are some clear downsides, however. Recall that Ri denotes the region where it’s permissible for weight to be

placed. The weight targets in general allow for some weight overlap because we don’t want to marry qualitative

descriptions for the partitioning of a shock’s support (e.g., "a = .99 is small, a = 1.01 is big"). In this case, Ri = Ii ,

so such paradoxes are unavoidable. The point at which weights peak must also be set explicitly. In practice, the

solution is to see how sensitive results are to changes in the partitioning and peaks. A deeper problem is the

distribution function is unknown. The procedure still works with the empirical CDF, but we would much rather the

functions not vary with repeated sampling. With these generated regressors, there would need to be a standard

error correction, outlined later in this section and in Appendix A.3, on top of the generated regressor implied by

Proposition 1. The direct correction is actually marginal but the standard errors themselves are intrinsically large.

3.4 Deep Learning

To motivate the use of deep learning, we will briefly get a sense of the can of worms we are opening if we allow

there to be correlation between the functions used in the regression. The N = 2 specification is

Yt+h = α+ β1 f (ϵt) + β2 g(ϵt) + ut

Appendix A.2 shows the integral of the weights in β1 is proportional to

Cov( f (ϵt),ϵt)−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))
Cov(g(ϵt),ϵt)

The first two goals to hit target weighting are non-negative and relevant weights. Since the quantity above

represents the "total weight", it’s important this quantity be positive to help ensure β1 represents a positively

weighted average of marginal effects.11 Equally, we need the analogous expression for β2 to be positive. The

simplest path to joint satisfaction is the functions are correlated with ϵ yet uncorrelated with each other. As the

number of function grows, the potentially paradoxical paths become more unwieldy. For the second goal, we know

from (4) the weights in β1 will be large where ϵt has more density and f1(ϵt) is large (provided 1a≤ϵt
= 1).

All these "steps to success" contextualize the moderate success of disjoint indicator functions for the N = 4 case

seen in Example 6. The focus of this paper will be on the targeting the same 4 combinations of {big, small} and

{positive, negative} along the dimensions of a shock’s size and sign. Like the orthogonal regressor approach, the

deep learning procedure can naturally be extended to larger collections, but the constraint sets are already difficult

to manage and increasing N will become impractical much sooner. Some anecdotal evidence to this effect –

in the N = 4 case with slight abuse of notation we have

Yt+h = α+ β1 fsmall, neg + β2 fbig, neg + β3 fsmall, pos + β4 fbig, pos + ut

11Though recall this is not a sufficient condition on its own, as many of the examples in Section 2 show.
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For this case, one instance of training with standard normal shocks produces "small" functions resembling indicators

and "big" functions that look like a ReLu. Their plots (Figure 12) roughly look like (chronologically)

f1(x) = 1x>−0.5 − 1 and f2(x) = min{−.8x + 2, 0}

f3(x) = 1x>−0.1 − .1 and f4(x) = max{0, .8x − 2}

However, actually using these functions fails spectacularly; notice the approximations for f1 and f3 are highly

collinear. It turns out the the neural network introduces lots of slight idiosyncrasies to slither through the monstrous

constraint set. So the complexity cost for expanding beyond N = 4 may not be worth the added specificity.

Deep learning carries a stigma of being opaque, but in this case neural network training is perfectly analogous

to generic minimization routines in your programming language of choice. The modal minimization application is

to find a vector x ∈ Rk that minimizes F(x ). The only difference here is the search is over a space of functions,

rather than a subset of the real numbers, and the space of functions that can be approximated by neural networks is

vast. Again, turning to deep learning is even more natural because we are more precisely looking for a collection of

functions with complicated dependencies. To search effectively in such a setting, a minimizer must jump through

lots of "hoops" in order to even take a step, meaning the extensive parameterization endemic to deep learning is

likely a necessary condition for this to even be a feasible venture.

In principle, a deep learning algorithm for the objectives (weighting targets) described at the beginning of this

section is simple. Each iteration of training (epoch) will generate a candidate collection of functions
�

fi(·)
	4

i=1.

Given a sample for a shock {ϵt}Tt=0, this yields a set of weights defined by sample analogs of (4). The candidate

collection will be evaluated by a loss function which penalizes instances where weighting targets are not being

hit. For example, a penalty will be incurred if there is negative weight, if there is weight where there definitively

shouldn’t be, and if the weight functions are not initially increasing. There are a myriad of implementation flavors

for actually encoding this algorithm, which are discussed in more detail in Online Appendix B.2. One stumbling

block arising from the complicated nature of the problem is approaches that are functionally equivalent (e.g.,

different ways of estimating LP) can have very different complexity and convergence properties. The basic strategy

I’ve found most effective is to train with relatively few epochs, see what aspects of target weighting are being

violated most intensely, adjust the penalty weights for those components, and start again. The goal here is not

really about getting the loss value within a tolerance threshold, but rather to plot the weights after training and be

happy with the allocations (Kolesár and Plagborg-Møller, 2025).

3.5 Simulation Performance

This section will assess performance across a variety of data generating processes. To give a preview of the

prevailing takeaway from this section, first the DGP in (6) from Example 2 and Example 6. For the case of

b = 2 with standard normal shocks (and sample size n = 300), a deep learning approach only offers a modest
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improvement over the Caravello and Martínez Bruera (2024) approach, failing to reject a null hypothesis of no size

effects in 26% of simulations. The generated regressor approach fares even worse, correctly rejecting in only 60%

of simulations – the methods developed to produce less false negatives failed to do so. This is because, while the

weights look more appealing (see Figure 11 in Appendix A.5), the variance of the coefficients limits the usefulness

of this property. For the generated regressor approach, the functions corresponding to big shocks in particular have

large variance, in part because less of the sample is concentrated there. For deep learning, the aforementioned

idiosyncrasies the neural network creates to respect the constraint set (see Figure 12 in Appendix A.5) also create

more variance. And to re-emphasize – these occur even with DGP (6), which outside of a single kink, is about as

vanilla as it gets (outcome driven entirely by two i.i.d shocks with no autocorrelation). This is an indication that

disjoint indicator functions should be the default method of choice, though it’s still useful to report results from all.

One last, previously omitted case to discuss before moving on from DGP (6) is b = .5 (square-root). While the

indicator functions perform the best in this environment, nulls are not rejected in nearly 40% of cases, with the

other methods performing far worse. This presents a stark limitation – an important nonlinearity of economic

interest would be diminishing returns to scale of policy intervention. However, these are intrinsically harder to

detect, as the second derivative of the square-root function is essentially constant after moving away from 0. This

is an unfortunate downside the framework is not as well-equipped to handle.

To get a more wholistic picture of performance, we now consider a richer class of data generating processes. In

particular, Li et al. (2024) assess the finite sample tradeoffs between local projections and vector autoregressions by

making thousands of random selections of 5 variables from the Stock and Watson (2018) dataset and fit a dynamic

factor model to create a DGP (and back out the structural shocks). I use this as a starting point and compare

all the above methods against a multitude of flavors for DGP. Because each DGP has its own structural shock,

it’s not feasible to train a neural network on each one. I find the point estimates are very similar to the disjoint

indicator approach, which is not surprising given the functional forms it consistently converges to are broadly

well-approximated by combinations of indicators linear functions. For the generated regressors, construction

here is more feasible, albeit requiring a sorting procedure. Something slightly different from what’s described

in Section 3.3 can be used – instead of making the weight peak ci an arbitrary point, we can make it the sample

median, allowing for the function to be normalized. This is discussed in more detail in Appendix A.3, along with

the necessary standard error correction (which is negligible in practice).

I modify a threshold-VAR model from Loria et al. (2025) who argue it captures some fundamental macroeco-

nomic dynamics. The structure is centered around 3 components: growth of real activity yt , a financial factor

ft , and a macroeconomic factor mt . I keep this same system of 3 equations but add inflation πt and additional

fundamentals Wt . I use the Stock and Watson (2018) dataset and randomly select a series from the relevant group

of variables for yt , ft , mt , andπt and randomly select other variables from the remaining categories for Wt . The

procedure detailed in Li et al. (2024) is used to generate a structural monetary policy shock X t for this system

18



using a dynamic factor model representation. The skeleton of the threshold-VAR DGP is

yt = β0 + β1 ft + β2mt + β3πt + β
′
wWt−1 + uy

t

ft = α0 +α1 ft−1 +α2mt +α3 g(x t) ·1x( ft−1, mt−1) + u f
t

mt = γ0 + γ1mt−1 + γ2 ft−1 + γ3 g(x t) ·1x( ft−1, mt−1) + um
t

(7)

where g(x t) is some non-linear function of the shock and 1x( ft−1, mt−1) is a state-dependent multiplier. In the

baseline calibration, I set 1x ( ft−1, mt−1) = 3 if the financial and macroeconomic factors are both negative and equal

to 1 otherwise. I estimate the other parameters in this model using g(x t) = x t and omitting the state-dependence.

Then I simulate a time series for yt , ft , and mt using (7) with a few different choices for g(·) and the data for πt

and Wt . For each choice of g(·), I run several local projections at horizon h= 0 for the different approaches for

detecting nonlinearities. The LPs have 196 observations and include 4 lags of all variables except Wt , which is not

included at all to mimic the presence of omitted variables. The results are averages across 100 variations of (7)

with 10,000 simulations each. Inference is performed with Huber-White standard errors (Montiel Olea et al., 2024)

and results are materially the same using more involved estimations of the variance-covariance matrix (Xu, 2023).

Figure 7 plots the power of hypothesis tests using the indicator function approach and the even/odd weight

decomposition of Caravello and Martínez Bruera (2024) across 3 specifications for the non-linear shock function

g(x t) that feature both size and sign effects. The point of the plots is to show how power changes as we scale a

component of g(·) by θ . With a foundation of c · 1x≥c + x · 1x<c , the first specification has the first term scaled

by θ , likewise for the second specification and the second term. This can be thought of as two ways of adjusting

a jump then plateau of effects. The third specification is θ x2 · 1x≥c + x · 1x<c .
12 The shock is standardized and

the cutoff c is set to 1 in the DGP. Across simulations, the structural shocks follow a roughly but not perfectly

symmetric distribution, making the even/odd approach a valid choice ex-ante.

The plots show that the indicator function approach strictly dominates the even/odd decomposition, though the

gap is decreasing in the size of these specific nonlinearities. The Caravello and Martínez Bruera (2024) procedure

mostly dominates the generated regressor approach for the different parameterization, so it’s excluded for clarity.

The indicator function approach has the advantage of insignificant coefficients not being the end of the story; the

estimates may be different enough that a null of linearity can be rejected. In principle, this advantage should

extend to the generated regressors, but their unconventional construction clearly leads to even more inefficiency.

12The first two specifications were selected to give all methods as difficult task, with the third being a more traditional non-linear structure.
The results for the first two specifications are similar if we multiply x through their corresponding g(·).
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Figure 7

In every previous simulation, we have assumed the structural shock ϵt is perfectly observed. This will obviously

not be the case in practice. As mentioned in Section 2, if the structural shock is not observed the weights are

unknown. Assuming that a proxy zt is in fact the structural shock represents the ceiling on estimation quality.

But this says nothing about how useful what we’re actually estimating is. Kolesár and Plagborg-Møller (2025)

show that if controls are needed for identification, we cannot have any faith in what we’re estimating unless the

propensity score is linear. Instead, the proxy should indeed be a proxy in a classical sense – departures from

the structural shock amount to noisy measurement. This is merely a conjecture; measurement error itself can

be complicated, even if induced from noise alone. Chen et al. (2011) show that the usual "attenuation bias"

relationship to estimands does not hold if the measurement error is non-linear. Thankfully, I find in simulations

that under a rich set of measurement error types (e.g., nonlinearities, heteroskedaticity, state-dependent noise) the

"best case" weights are good approximations for the true weights. Even though the bias can go in either direction,

that does not matter for the hypothesis testing procedure. Using a simulation of the first specification of DGP (7)

with structural shock x t , Figure 8 plots the case of zt = sgn(x)(x + u)2 where u is normally distributed, mean-0

noise with conditional variance .012(1+ x2)). If we run local projections using zt and plot the weights as if zt = x t ,

the true weights are similar. The indicator function structure constrains deviations; out of several combinations

tried, this was about as ugly as it got. One specific area of concern is the true weights are putting much more

weight of shocks on the "wrong sign". But the consequences are limited to being less robust to false negatives.13

13This is another reason to use disjoint indicators. While it forces all coefficients to put some weight on the wrong sign, the values of ϵt
where "wrong-sign weight" is placed will be the same (within the the coefficient group). If we allow for overlap, we could have one coefficient
with much more wrong-sign weight than the rest, and we can’t know if it’s an issue without the exact form of measurement error.
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Figure 8: Selected Simulation of DGP (7) with Measurement Error

Finally, one issue that was not highlighted in the previous discussions is the issue of choosing thresholds. It’s not

ideal to have to mandate when a small shock becomes big etc. The first step to address this is to first standardize

the data and then make the partitioning based on data realities. The threshold for magnitude in positive shocks

need not be the same as for negative shocks. That should give an inkling as to a reasonable baseline to set, and

then robustness exercises could involve moving this threshold around to see if results are sensitive to cutoffs.

Interestingly, Figure 6 shows that while it feels like indicator functions involve setting paradoxical thresholds, there

is a significant amount of weight overlap, so this is actually not as much of an issue. In fact, to decrease the amount

of false negatives, one ironic way to address this is to allow indicators themselves to overlap. For example, the

weights when using f1 = 1(ϵt < .01) and f2 = 1(ϵt < −1.5) have significantly less overlap than the disjoint case.

The tension as mentioned before is this increases standard errors. On the other hand, for generated regressors,

there is no weight overlap and this paradox is unavoidable, though it can be diminished by fixing the peak at the

median of the interval instead of having to choose than beforehand as well.
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4 Application

Section 4.1 outlines consideration for estimation based on developments in the local projection literature and the

implications for shock series selection from the "regression anatomy" presented in Section 2. Section 4.2 applies

the preceding guidance for choosing a monetary shock proxy. Because many great papers and people have been

committed to the topic, the discussion is specialized and may not be of interest to general readers. Likewise,

interested readers may be disappointed that some of the arguments are not fully fleshed out, which I leave to

separate work. Section 4.3 shows the nonlinearity detection results and briefly outlines an attempt to match them

with a non-linear equilibrium model.

4.1 General Best Practices

The results in Section 2 rely on using the actual structural shock ϵt in the regression. In practice, we will have

some shock proxy zt . Kolesár and Plagborg-Møller (2025) note that if ϵt is unobserved, the form of the weights

are unknown, so plotting the weights under the assumption that ϵt = zt provides the "best case scenario". The

previous section illustrated that if noise alone causes the divergence between ϵt and zt , then the weights using

the proxy are actually a good approximation. There are typically many shock series researchers can choose from,

but the regression anatomy representation provides a clear first-order selection criteria: ϵt ≈ zt . Because we’re

working with finite samples and shocks will often be small in size, it’s important to note that ≈ here means the

bias is purely idiosyncratic. This raises concerns about identification approaches that either rely on some "selection

on observables" assumption or estimation in general. Namely, Kolesár and Plagborg-Møller (2025) show that if a

proxy is only exogenous conditional on some control set, the weights will depend on the control set (and will have

negative weights if there are non-linear relationships).

A complication of the guidelines for assessing the quality of proxies is there’s currently no adequate sensitivity

analysis procedure. Including controls can improve the efficiency of estimates, even though controls themselves

have no effect on a shock’s regression estimand, but there is a natural concern that certain control variables could

drive the results. In the language of the regression anatomy framework, the concern is the estimand using zt

is not a useful object because some propensity score squirreliness makes the regression weights badly behaved.

Kolesár and Plagborg-Møller (2025) recommend dropping various controls and seeing if results change, a strategy

ubiquitous in appendix robustness checks. Unfortunately, these results may be misleading. Under a special case of

DGP (7) where shocks enter linearly, point estimates in the regression of yt on ϵt vary wildly across samples and

when different control sets are used. So we cannot distinguish between variation indicating sensitivity to controls

or sensitivity to sample size. This raises a broader point: another common robustness check is to redo the main

analysis with different shock proxies and see if the results change. But because these proxies are constructed so

differently (see, e.g., Brennan et al. (2024) for comparisons of monetary policy shock series), in general there’s
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no reason the implied weights and therefore results should be similar. Until better sensitivity analysis tests are

available, the best strategy is to have a convincing argument ϵt ≈ zt .
14

Once a shock series has been selected, there are other considerations with running local projections (LPs).

Ramey (2016)’s handbook chapter provides a good starting point, but there is also important recent work. Inference

remains an open question. Newey-West standard errors have been shown to be biased, while Huber-White with

lagged control variables is often sufficient (Herbst and Johannsen, 2024; Montiel Olea and Plagborg-Møller, 2021).

Xu (2023) shows a more involved estimation of the variance-covariance matrix that is robust in a larger class of

DGPs. There have also been methodological advances, namely smooth local projections (Barnichon and Brownlees,

2019), which uses penalization to salvage the appealing properties of LPs while increasing their efficiency and

delivering smoother coefficient plots, and Bayesian local projection (Ferreira et al., 2024). A great deal of work

has been done to clarify the differences between LP and vector autoregression (VAR).15 (Plagborg-Møller and

Wolf, 2021) prove LP and VAR are asymptotically equivolent in the limit (if lag order is high enough). So even

researchers who prefer VAR estimation should run the LP analogue and plot the weights to have a better since of

what is being estimated. While there will be finite sample differences (Li et al., 2024; Montiel Olea et al., 2024),

plotting the weights in the LP will still be informative. Borrowing from Kolesár and Plagborg-Møller (2025)’s

example, if all the weights on a government spending shock are being placed on positive values, what estimation

is actually uncovering are the effects of spending buildups.

To conclude, the basic implementation chronology is the following. First, select and standardize a shock series

zt based on the confidence in approximating the underlying weights on ϵt . In the default case, the next step is to

identify N regions of interest along the shock’s support to create disjoint indicator functions. This paper emphasizes

choice of N = 4 because of sample size limitations. Section 2 reveals that this procedure is not equivolent to

including only 3 indicators and testing effects relative to the fourth, so instead define the indicators so that they

exclude a small interval around 0. Further, Proposition 1 emphasizes "normalizing" the indicator functions so

that indicators on the negative real line enter the regression with a negative sign attached. For each fi in the

collection, define a new function gi , where gi = αi fi and αi is the coefficient on fi in a regression of zt on { fi}Ni=1

and a constant. Then run local projections of the outcome variable on {gi}Ni=1, a control set, and a constant. In

the regressions, include a healthy number of lags and use Huber-White Standard Errors for inference, or a more

involved estimation routine of choice (e.g., Xu, 2023). Appendix A.1 shows the delta method correction for these

generated regressors on the diagonal of the variance-covariance matrix is the square of the second stage coefficient

divided by the first stage t-statistic, which will generally be negligible in practice. On the off-diagonals, the first

stage covariance will also show up as
βiβ j

ai a j
Cov(ai , a j).

14The proxy should only be tied to one structural shock. If not accounted for, Koo et al. (2024) show inference will be incorrect. For proxies
with many 0 values, finite sample correlation is inherent, see Barnichon and Mesters (2025) for discussion and a solution for narrative proxies.

15Li et al. (2024) confirm the "bias vs. efficiency" conjecture, but Montiel Olea et al. (2024) reveal the cost of efficiency gains can be
prohibitive: VARs are comfortably insensitive to misspecification if and only if the relevant estimate has similar variance to its LP analogue.
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The preceding paragraph outlines the "default" case, but there are other potentially useful considerations.

For the initial function collection, Section 3 showed two additional approaches (generated regressor and deep

learning), but may be limited by the sample size. It should also be noted these two approaches are purely means

of carrying out hypothesis testing, and a unit change in these variables does not have any economic interpretation.

Because indicator functions do not face the same limitation, one option for the primary illustration of nonlinearities

is to use penalized local projections. One drawback is inference is complicated by regularization (and possible

cross-validation). To guard against potential bias in variance-covariance estimation, Barnichon and Brownlees

(2019) recommend computing using standard errors from an even more "under-smoothed" estimator. To go a step

further, in the application in Section 4.3, I also fix the penalty parameter at a mild level before estimating and

use 99% confidence intervals. Lastly, there’s a point to be made about when nonlinearities actually matter. For

example: suppose marginal effects for positive shocks are β and for negative shocks β+ϵ. A population hypothesis

test will reject a null hypothesis of linearity, even though a linear model is appropriate. If the indicator functions

are normalized so that their individual weights integrate to 1, coefficient differences can give some insight into

whether the degree of nonlinearity matters because they have a reasonable interpretation as a difference in means.

For the application in Section 4.3, this translates to measuring the nonlinearity in terms of difference in percent

change in outcome since the shock occurred.16

4.2 Selecting a Monetary Shock Series

To select a series for assessing possible nonlinearities in the transmission of U.S. monetary policy, we have to

address a question for which there is surprisingly not a straightforward answer: what is a (structural) monetary

policy shock? Unless one is willing to argue that central banks have a systematic way to set rates they decide

arbitrarily to deviate from, which seems like a poor description of an institution like the Federal Reserve and

its army of economists, monetary shocks are changes in policy unanticipated by private agents. This makes the

high-frequency measures of forecast errors backed out from price changes in futures markets a natural choice.

Within the class of high-frequency measures, there are several options. Bu et al. (2021) is currently popular

because of its ability to easily handle the zero lower bound period by creating a single measure to represent shocks

across the entire yield curve. At the same time,their measure cannot be easily mapped into a candidate data

generating process, so it’s less clear would be estimated (Brennan et al., 2024). Another issue is that because

private agents do not know perfectly the central bank’s reaction function and there may not be a single information

set for all agents, changes in futures markets may be representing combinations of multiple structural shocks, which

is a challenge. There are several measures which look at changes to expected future interest rates, rather than the

16To avoid haggling over what constitutes meaningful nonlinearity, one option is to normalize by the linear estimate’s standard deviations, so
coefficient differences are still in units of effect sizes but in some sense have an interpretation similar to t-statistics (i.e., gesturing towards the
likelihood parameters were drawn from the same distribution). Results are also more easily comparable to DSGE model output by minimizing
unimportant scaling distortion from finite sample properties of time series and model-simulated data. Details are in Online Appendix B.6.

24



current period, and try to decompose them into "forward guidance" vs. "information shocks" (e.g., Jarociński and

Karadi, 2020), but because these measures are estimation-specific, there is a risk that the deviation from structural

shocks is systematic or sample-dependent, rather than pure noise. Instead, sacrificing performance at the zero

lower bound and looking at changes to the Fed’s expected change to its target in the current period seems to be

the most practical option. All concerns about the possible tangling of effects from forward guidance, information,

credibility, preferences, etc are moot when looking at the current period because once an action is announced, the

adjustment is not function of ambiguity about any of those things because the Fed chair has essentially written

the futures price correction in stone.17 This leads to a selection of the Jarociński (2024) MP1 series, originally

developed by Kuttner (2001), as the proxy of choice.

Before moving onto discussing other approaches more in-depth, it should be noted there are many concerns

specific to the high-frequency series. When outcome variables are not also high-frequency, Jacobson et al. (2024)

warn of temporal aggregation bias because the Federal Reserve’s meeting calendar fluctuates and sometimes

multiple shocks occur within the same month. Absent getting better data, the best response is likely to not put

much stock in the results at the shortest horizons. Casini and McCloskey (2024) also point out that using a narrow

observation is not actually a magic identification wand, though they show the Nakamura and Steinsson (2018)

measure is relatively robust to the potential concerns. A final consideration is that these futures markets are not

fully saturated with participants, particularly during the zero lower bound period, and past work has shown that

there are arbitrage opportunities available from the apparent predictability of the high-frequency adjustments

(Miranda-Agrippino and Ricco, 2021; Bauer and Swanson, 2023). This concern has rightly been a focal point

of the recent literature (Acosta, 2023), but the results may not be as damning as they seem. Leaving aside that

these markets may be innately "inefficient", it seems more likely that was these finite sample results are showing

are the effects of heteroskedasticity. When there is more movement in macro fundamentals, it is more likely for

central banks to act, thus creating more variance for structural shocks. Heteroskedasticity will not distort the

identification results and, as shown in Section 3, does not significantly disturb the utility of proxies.

Another popular method in this literature is projection orthogonalization, or using the residuals from a linear

regression. This is the basis for Romer and Romer (2004), who represent the change in interest rates unrelated to

the Fed’s information with the residuals in a regression of changes in the federal funds rate on Fed forecasts.18 But

the residuals themselves are extremely sensitive to the estimated coefficients, and we should not have faith that

ϵt ≈ zt – Cochrane (2011) demonstrates this won’t occur even in the simplest case where data generating process

is linear (a basic New Keynesian model with a Taylor Rule). Miranda-Agrippino and Ricco (2021) and Bauer and

Swanson (2023) use orthogonalization by residualizing existing measures of monetary policy shocks to guard

against claims of predictability (see Acosta (2023) for a survey). These adjustments will likewise be sensitive to

17There is risk of contamination in the few instances where there were shocks in the days before the formal announcement of the target.
18Aruoba and Drechsel (2024) argue these forecasts don’t span the information set. They extend the methodology with text analysis.
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the realized OLS point estimates, which really has bite given the sample size. For instance, Bauer and Swanson

(2023)’s shocks are based on a 1988-2023 monthly sample. If they had originally done this procedure in 2015, the

median percent difference in shock magnitude between the original and "updated" series would be over 100%.19

4.3 Nonlinearities in the Effects of Monetary Policy Shocks

I look for evidence of nonlinearities in monetary policy transmission by applying the described procedure to the

outcome variables of industrial production, consumer price index (CPI), consumption, and unemployment from

November 1988 to January 2020 using the MP1 series.20 I take (log) differences and cumulate them over future

horizons so that the left hand side variable can be interpreted as "percent change since the shock occurred". The

estimation is done with penalized Local Projections, with standard errors computed as described in Section 4.3 to

be over-correct for any potential bias. I find evidence of nonlinearities in each variable. Recall within this paradigm,

we define size and sign effects in terms hypothesis tests that compare two coefficients. The visualizations can be

thought of as showing the effect of one type of shock relative to the other. For example, a negative sign effect for

big shocks and industrial production can be interpreted as the expansionary effect for big negative shocks (on IP)

is smaller than the contractionary effect from big positive shocks.

Figure 9 show size effects for positive shocks and sign effects for big shocks. With the exception of unemployment,

larger positive shocks have a disproportionately more contractionary effect. Sign effects in this context can be

interpreted through the lens of "pushing on a string" (see, e.g., Fisher, 1935), the idea that the effects of monetary

policy are asymmetric because during a downturn there is little central banks can do to create an appetite for

lending and spur broader economic activity. The sign effect plots show this narrative matches all variables but

unemployment. Appendix A.6 features more visualizations (as well as more details on replication). In particular,

there is evidence big negative shocks have a more expansionary effect in the long-run than small shocks (Figure 14).

For sign effects, not much can be said about asymmetries for small shocks (Figure 15).

The generate regressor and deep learning approaches also point in the same direction. In particular, Figure 10

shows even the point estimates for the machine learning-based estimates are quite similar. It’s important reiterate

that a unit change in these two sets of functional regressors has no interpretation, even informally. They are

merely concocted in a way so that we know the estimands represent a weighted average of marginal effects, but

because the weights vary across approaches, they aren’t directly comparable to the indicator approach. On the

other hand, a unit change in an indicator function has a more direct interpretation, making it more appropriate to

ascribe an interpretation of size and sign effects directly to looking at the difference in coefficients. More details

on the output from the other are in Online Appendix B.4, such as their corresponding weights. Overall, a picture is

painted that is hard to square with standard models: nonlinearities that peak in the medium to long-run.

19Sims (1998) cautions against scrutinizing shock magnitudes in VARs, which are relative to a given information set. The concern here is
distinct. Again, ϵt ≈ zt means the bias should be from systematic measurement noise (so shouldn’t be mechanically sample-dependent).

20More details can be found in Online Appendix B.4.
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Figure 9: Indicator Approach with MP1 Shocks

Figure 10: Machine Learning Approach with MP1 Shocks

The next step after finding results like this is to try and explain them. To compare to the results from US data,

a basic point of reference would be using a model that features meaningful nonlinearities to generate data and

then run the same regressions. Barnichon and Matthes (2018) conjecture that sign effects which work in opposite

directions for unemployment and inflation, which is what we observed in the last section, can be rationalized in

a model with downward-rigid prices and wages (Kim and Ruge-Murcia, 2009). In this setting, firms seeking to
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change its price at a rate different than steady-state inflation face an adjustment cost

Φ
p
t (πt) =

φp

ψ2
p

�

e−ψp(πt−π∗) +ψp(πt −π∗)− 1
�

For ψp > 0, it’s more costly to decrease prices than raise them (downward-rigid), for ψp < 0 prices are upward-

rigid, and the function limits to symmetric adjustment costs as ψp→ 0. Nominal wage adjustment costs take on

the same structure. Past estimation of this model have found evidence of downward rigidity in prices and wages,

consistent with empirical evidence dating back to Keynes (1936) and Tobin (1972).

Since the relevance for this paper is largely motivation, I relegate most details about the model and the

estimation to Online Appendix B.5. Using the same sample period of US data, the Aruoba et al. (2017) extension

of the downward-rigidity model is estimated to second order via a standard random walk Metropolis-Hastings

algorithm and particle filter (Fernandez-Villaverde and Rubio-Ramirez, 2007). I use the distribution of parameters

generated by this exercise to simulate data and run the same local projections procedure to create a Bayesian

analogs (i.e., using credible sets instead of confidence intervals) for the empirical results. These exercises show

(full results in Online Appendix B.5) that this while the model can generate nonlinearities, in general the observed

asymmetric effects for both size and sign occur on impact and then quickly dissipate. I also take the posterior

mode of all parameters and then vary both asymmetry parameters (one at a time, in both directions, and then

both at once in the same direction) while keeping everything else fixed, then simulate data and estimate for each

combination. This exercise provides some clarity: on impact, certain combinations of the asymmetry parameters

can generate any desired nonlinearities, but it cannot be sustained.

Figure 11
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Looking at the impulse response functions directly from the model (rather than running a LP) corroborates the

above interpretations. Figure 11 shows impulse responses for both negative and positive shocks of different sizes.

By a horizon of 5 periods after the shock, the magnitude of responses are near or below zero. Online Appendix B.5

discusses various extensions to the model, like adding autocorrelated shocks, that ultimately don’t help much.

One reason why the effects of monetary shocks may not have a lasting effect is because of the lack of inertia

in interest rate setting. Even though the Metropolis-Hastings produced draws with moderately high persistence

in the Taylor Rule (posterior mode of ρr ≈ .67), an inspection of model simulated data reveals that whenever

a large monetary shock takes the central bank away from its (nominal) target i∗, it generally doesn’t take long

to get back. Table 1 in Online Appendix B.5 shows the results of 10,000 simulations at the posterior mode. For

each simulation, I take the median distance between the target interest rate and the current interest rate h periods

after a big change in interest rates (magnitude greater than 10%) and then average across simulations. In periods

in which the central bank heavily adjusts the interest rate, the target is relatively far away, but this is almost

completely undone 2 periods later. There is also a large asymmetry on impact that quickly becomes less dramatic.

Regardless of model, consecutive, large realizations of white noise innovations are unlikely, but the staying power

of shocks can vary. These results suggest that the nonlinearities observed in data may not have an explanation in

our standard class of models and warrant further explorations for channels in monetary policy transmission. There

should also be some broader considerations added in model selection. Linearized general equilibrium models,

appealing because of a reduction of analytical and computational complexity, can output sub-optimal normative

prescriptions if the economy actually follows a data generating process with strong non-linear components.

5 Conclusion

This paper demonstrates a new method to test for nonlinearities in data exploiting properties of least squares

regression that are consequences of assumptions about proxies for structural shocks that are commonly made in

the applied macroeconomics literature. Three new approaches within this framework were characterized, but

the simplest (disjoint indicator functions) seems to be the most useful in practice. While this seems to be yet

another example of the power of OLS in spite of its simplicity, there are some limitations that point to more future

work. There is a tension that emerges between making the weights appear in the desired places and the efficiency

of estimates. The disjoint indicator functions are the most efficient option at the expense of having relatively

dispersed weight. So while we can view coefficient differences as a good gauge of deviations from nonlinearity, we

cannot interpret the estimands themselves as weighted averages of marginal effects on the areas the indicator

functions are active (they are weighted averages over a larger region). It seems possible to expand along this

dimension, but it’s not immediately clear how. The procedure informed an application to monetary policy shocks,

which showed results that are difficult to match even with a general equilibrium model that featured rich size and

sign nonlinearities. Results like this can inform paths forward for better understanding the transmission of policy.
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Appendix21

A.1 Proof and Discussion of Proposition 1

First, restating some of the key definitions.

Definition. Call a collection of disjoint intervals
�

Ii

	N

i=1 a sign partition (of R) if there exists O0 (which we can

call the center set) such that 0 ∈ O0, O0 ∪
�

∪N
i=1 Ii

�

= R, and O0 ∩
�

∪N
i=1 Ii

�

is measure-0.

Definition. Call a collection of indicator functions
�

fi(x t)
	N

i=1 a normalized collection on a sign partition
�

Ii

	N

i=1

if their concatenation X f
t has full rank, x ∈ Ii⇐⇒ fi(x) ̸= 0, and a normalization:

• x < 0 and fi(x) ̸= 0 =⇒ fi(x) = −1

• x > 0 and fi(x) ̸= 0 =⇒ f (x) = 1.

Also recall the earlier notation: f ⊥i (x t) are the residuals in a projection of fi(x t) on { fk(x t)}Nk ̸=i and a constant.

The strategy of the proof will be to first show that for a normalized collection of indicator functions
�

fi(x t)
	N

i=1

on a sign partition
�

Ii

	N

i=1, if we project fi on the rest of the functions (and a constant), all the projection estimands

will have the same magnitude. This will allow us to show a piecewise form for f ⊥i (x t) that proves the weights in

the estimands on the functional regressors in a projection of Yt+h on
�

fi(x t)
	N

i=1 (and a control set and a constant)

will be non-negative. This warrants the interpretation of each as representing a positively weighted average of

marginal effects. To actually compare coefficients, we need to normalize them so that the integrated weight is

the same across coefficients, which thankfully is very simple. One thing important to highlight before proceeding

is the "normalization" aspect of the indicator functions. If we did not have this, the correlation with x t would

naturally be negative for the indicator functions active on the negative real line.

Step 1: Uniform Magnitude in Residualization Projections

Consider a normalized collection of indicator functions
�

fi(x t)
	N

i=1 on a sign partition
�

Ii

	N

i=1. for a projection of

f1 (i = 1 WLOG) on the rest of the functions (and a constant) we have

f1 = b0 +
N
∑

k=2

bk−1 fk

The constant solves b0 = E[ fi]−
∑N

k=2 ak−1E[ fk]. The other estimands solve b0E[ fk] = −bkE[ f 2
k ], which leads to

ak−1 = −b0sign(Ik), where k ≥ 1 and sign(Ik) is equal to sign(ik) for any ik ∈ Ik (given our definition of normalized

collection and sign partition). Define µi = P(x ∈ Ii) and µ0 = P(x ∈ O0). Substituting into the equation for the

constant, we get that sign(I1)µ1 = b0(µ1 +µ0). Therefore

|b j |=
µ1

µ1 +µ0
( j ≥ 0)

21The Online Appendix can be found in the paper’s GitHub repository https://github.com/paulbousquet/UncoveringNonlin
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Note that (i) sample analogs will have this same property and (ii) center set O0 must have positive measure in

order for these projections not to be perfectly collinear (hence the full rank condition is critical).

Step 2: Form of Projection Residuals and Implications

Now switching to the general case, define b⊥i =
µi

µi+µ0
. We have shown that f ⊥i (x) is equal to sign(Ii)b⊥i when

x ∈ Ii , −sign(Ii)b⊥i when x ∈ O0, and 0 otherwise. So now we return to the form of the weights in (3). Again, we

assume ϵt is a continuously distributed shock on I ⊂ R. The weights will be non-negative if Cov(1ϵt≥a, f ⊥i (ϵt))≥ 0.

Because f ⊥i (ϵt) is a mean-0 function

Cov(1ϵt≥a, f ⊥i (ϵt)) =

∫ ∞

a

f ⊥i (x)dF(x)

where F(·) is the distribution function of ϵt . This now illuminates the necessity of normalizing the indicator

functions to not simply be binary but instead to be −1 if they are active on negative regions. The formula above

shows that the weights represent the remaining mass ϵt has left on the real line (from a onward) weighted by the

function’s values. Because the function is mean-0, from −∞ to the left endpoint of Ii , the weights are 0.

• For the case of the indicator functions relating to an interval where sign(Ii) = −1, as a increases from its

left endpoint, the weights increase as the function has less mass remaining with negative values. Therefore

the weights peak at the right endpoint, where all of the negatively-weighted mass has been shed. If this

endpoint is not at the border of O0, they will remain at this peak until a hits the left border of O0, then they

will decrease until they hit 0 at the right endpoint of O0.

• For the other case (sign(Ii) = 1), the weights follow the opposite pattern. The negatively-weighted parts

are on O0, so moving along the real line towards∞ increases Cov(1ϵt≥a, f ⊥i (ϵt)) until it hits its peak at the

right endpoint of O0, and remains there until the beginning of Ii

So not only have we shown that the weights will be non-negative, we’ve also traversed out the values they will

take along the entire support.22 Combined with the extensions of Kolesár and Plagborg-Møller (2025) shown in

(3), we have shown these coefficients represent positively weighted sum of average marginal effects.

Some discussion on the mechanics demonstrated above before proceeding with the proof. This underscores

both the importance and the tension of the O0 region: if we make O0 singleton (simply 0), the function collection

will not have full rank because the functions will be perfectly collinear (plug in µ0 = 0 to the earlier expressions).

At the same time, the larger the O0 region, we are increasing the areas where the estimand on fi is putting positive

weight on areas not in Ii . This motivates the generated regressors approach. As will be discussed later in this

Appendix, another fix is to allow for the indicators to overlap, but this of course introduces a different kind of

collinearity problem. One nice thing about the O0 region in practice is many of these shock series have lots of

22Note if there are gaps in the support I ⊂ R, the behavior is the same just in a discontinuous fashion.
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zeros, which may introduce separate problems (Barnichon and Mesters, 2025) but as far as this application is

concerned it’s helpful because we can make O0 small without having µ0 ≈ 0.

Step 3: Re-Scaling the Functions We have shown that each βi in a projection of Yt+h on a relatively generic set

of indicator function
�

fi(x t)
	N

i=1 will be be weighted sum of average marginal effects. However, we still have to

confront a scaling problem to make comparisons between coefficients. Namely, recall from Proposition 1 that mh(a)

is the expectation of Yt+h conditional on ϵt = a. Suppose we run the aforementioned projection and compare β1

and β2. If
∫

I ω1(a)da < 1 and
∫

I ω2(a)da = 1, then even if mh(·) is linear in ϵt , β1 ̸= β2. Rather than trying to

define indicator functions along equal regions of probability mass, we can instead just scale the estimands so that

their integrated area is the same. It makes sense to normalize the weights so that they all integrate to 1 so we can

interpret them as proper weighted averages (of marginal effects). This normalization is simple, and while it makes

these new functions generated regressors, the requisite delta method correction will be negligible in practice.

To be explicit: given the same
�

fi(x t)
	N

i=1, our goal is to create a new collection
�

gi(x t)
	N

i=1. For each gi , we

are looking for αi such that in a projection of Yt+h on
�

gi(x t)
	N

i=1 (and a constant and control set), the resulting

estimand weights (given by (4)) on the new set of functional regressors will have the property
∫

I ω
g
i (a)da = 1.

First, note that we are effectively creating indicator functions out of indicator functions, though in a broad sense

where the outputs are a binary other than 0 and 1. So the resulting weights in these new functions will have

the property αiω
g
i (a) = ωi(a), where ωi(a) are the weights in the projection using the collection

�

fi(x t)
	N

i=1.

Integrating over both sides, the correction is simply to divide by the total weighted area from the original projection,

which is given by
Cov(ϵt , f

⊥
i (ϵt ))

Var( f ⊥i (ϵt )
(proof in next Appendix section). This is easily estimatable by OLS. For the standard

error correction, the projection estimands for gi defined implicitly in terms of all the αi . Because the corrections

are essentially just scaling 1 estimand that is orthogonal to the others, differentiating the usual OLS form of

(X ′X )−1X ′Y yields a variance correction of
�

β̃i
∂ αi

�2
Var(αi) =

β̃2
i Var(αi)
α2

i
, where β̃i is the new projection estimand for

gi , meaning for the sample analog, we simply divide the estimate for β̃ by corresponding first stage t-statistic. So

another reason to not increase the number of functions from the baseline of N = 4 is because these corrections

will become less negligible. The covariance correction is
β̃i β̃ j

ai a j
Cov(ai , a j), where Cov(ai , a j) is actually just Var(a0).

Now we are done: the estimands represent weighted averages of marginal effects. Recall the discussion from

Step 2 on the areas at which functions will have weight. For functional regressor fi , weight will be placed on

[min
�

Ii , O0

	

,max{Ii , O0}]∩ I . So comparing two estimands for fi , f j mean the total area of weight covered is the

same Si j given in the proposition. Therefore, if mh(·) is linear in ϵt on Si j , then βi = β j . Next, we will discuss

trying to get a "better" result because Si j may be large, especially when the number of functions grows.
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The Practical Drawbacks of a Stronger Result

Using the same steps, we can prove a stronger result. Suppose we drop the requirement of the sign partition that

the intervals be disjoint and instead define several overlapping intervals. Since O0 cannot be measure 0 to satisfy

the definition of a normalized collection, define o−, o+ such that O0 = [o−, o+]. So instead of a sign partition, we

can call an overlap sign partition a collection of intervals such that each Ii satisfies [Li , o−) for some Li or [o+, Ri)

for some Ri (in slight abuse of notation, Li may be −∞). This just creates two groups: negative and positive

shock intervals. In the body of the paper, we define the indexing of the intervals so that the first member of each

group corresponds to the smallest shock magnitudes and order the negative group first. Continue to assume that is

the case, so that I1, . . . , In− are the group of negative intervals and In−+1, . . . , IN are the group of positive intervals.

Then we for an overlapping sign partition, we have the same results in Proposition 1 but a different Si j region.

Other for i that relates to a beginning of a group (i.e., for i ̸= 1, n− + 1), the weights ωi(a) for the βi will non-zero

for a ∈
�

Ii−1 ∪ Ii

�

. For if i = 1, n− + 1, there is non-zero weight for a ∈
�

O0 ∪ Ii

�

. Two immediate takeaways.

First, this is incredibly ironic. The regions of overlap across functions are considerably tighter if we allow for the

intervals themselves to overlap. For N = 4, the regions are essentially the same, but you can also show that the

weights placed in the estimand for βi are comparatively much smaller outside of Ii . Second, this seems to be a

much better approach, taken at face value, especially for N > 4. Our goal would be to interpret each βi as an

estimate of average marginal effects on Ii . Because of the considerable weight placed outside of Ii in the default

Proposition 1 case, this really isn’t possible. If we allow for overlap, the interpretation is much more reasonable.

There is however no free lunch to this result in practice, even if the identification result is strictly more desirable.

Allowing the intervals to overlap means the regressors have much more correlation between them. This will of

course show up in standard errors. Further, the expansive Si j may actually be a benefit once we are in realm of

having a proxy for the structural shock, rather than the structural shock itself. With a proxy, we have no way to

know exactly where weight is being placed. Proposition 1 shows that even in a proxy world, the region where

weight is being placed will be anchored by O0 across estimands. So in practice, we will define an O0 in terms of

functions of the shock, but the center set we are actually using with respect to the proxy is unknown. In the case

of using disjoint intervals, we at least know that however the center set shifts, the weights will all shift together,

which gives some regularity. These two drawbacks ultimately mean the best path forward is simply to use disjoint

intervals. But if the primary intent is to get point estimates of average marginal effects on specific regions of the

shocks support, it may be worth the inefficiency to use overlapping intervals.
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A.2 Inherency of Negative Weight

If ϵt is a continuously distributed shock on I ⊂ R, note that23

∫

I

Cov
�

1{a≥ϵt}, f (ϵt)
�

da =

∫

I

¦

E[1{a≥ϵt} f (ϵt)]−E[1{a≥ϵt}]E[ f (ϵt)]
©

da

= E





�

f (ϵt)−E[ f (ϵt)]
�

 

∫

I t

da

!



= E
�

( f (ϵt)−E[ f (ϵt)])ϵt

�

= Cov( f (ϵt),ϵt)

where I t = {x ∈ I : x ≤ ϵt}. Also notice for a generic f (·) and g(·)
∫

I

Cov
�

1{a≥ϵt}, f (ϵt)
�

−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))

∫

I

Cov
�

1{a≥ϵt}, g(ϵt)
�

= Cov( f (ϵt),ϵt)−
Cov( f (ϵ), g(ϵ))

Var(g(ϵ))
Cov(g(ϵt),ϵt)

Recall from (4), the weight function on β2 from (5) will follow ω2(a) =
Cov(1{a≤ϵt }, f (ϵ)

⊥)
Var( f (ϵ)⊥) . Since f ⊥(ϵ) in this case is

f (ϵ)− Cov( f (ϵ),ϵ))
Var(ϵ) ,

∫

I ω2(a)da will be proportional to the above result when g(ϵ) = ϵ, which is 0. Thus, ifω2(a) ̸= 0

for any a, there must be both ω2 must take on negative values, stripping us of grounds to make causal claims.

A.3 Standard Errors for Generated Orthogonal Regressors

When using the generated orthogonal regressor approach, one must specify intervals {Ii}Ni=1 and a collection of

points {ci}Ni=1 within each interval where the weights will peak. Here, I only focus on the case where we set ci

equal to the median of the interval Ii (this is what was used for the applications in the paper). The full derivations

can be found in Online Appendix B.3, as well as derivations for the case that was initially presented in Section 3.3

that defined the function in terms of the Empirical CDF.

To be explicit, define Ii = [Li , Ri), where Li may be −∞ in slight abuse of notation. Here, we are thinking

about a case where we have a time series for a shock (or a proxy)
�

ϵt

	T

t=0. When we set ci equal to the median,

our functions in the basic case where they are piecewise-linear are

fi(x) =











0 if x /∈ Ii
−ki

ni−ki
if x ∈ [Li , ci)

1 if x ∈ [ci , Ri)

where ni , ki are the number of observations where ϵt ∈ Ii and ϵt ∈ [Li , ci), respectively. This definition ensures

that the function will be hump shaped and place weight only within Ii .
24 The necessary delta error adjustment

turns out to be simple. The potential complications relating to the probability density at ci are neutralized the term

appears in both the variance of ci as well as ∂ βi
∂ ci

. The cancellation allows the correction term to simplify to bβ2
i /ni .

23This holds in the interior of I , see Kolesár and Plagborg-Møller (2025) Lemma 3 and Caravello and Martínez Bruera (2024) Lemma 1.
24The same adjustment described in Proposition 1 can be performed to let the weights integrate to 1
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A.4 Unpacking the Weight Form

Recall the general form from (4) in Section 2

ωi =
Cov(1a≤ϵt

, X⊥i )

Var(X⊥i )

where X⊥i is the residual from regressing X i on the other elements in Xt . We can unpack this definition to get

things soley in terms of covariances and variance of terms of Xt , which amounts to an expansion of the FWL

theorem. To my knowledge, this expansion has not been done previously and for good reason – the full form

amounts to several messy recursions that offer absolutely no insight to write out. However to motivate the use of

deep learning to address one of the central issues in this paper, it may be useful to see why it’s difficult to conjure

up functional forms that will produce appropriate weighting.

For what follows, consider X to be a generic matrix of N covariates in a regression (which can include a vector

of 1s) and X i to be its i-th element. Keeping with notation from earlier, X⊥i is the residual from X i on the remaining

elements of X . WLOG, we will initially look at an example where i = 1. Further consider X⊥1
n to be regressing the

n-th element of X on its the remaining parts excluding X1. Then

X⊥1 = X1 −
N
∑

n=2

Cov(X1, X⊥1
n )

Var(X⊥1
n )

Xn

We can keep unpacking these terms but it should be clear that indexing is quickly going to become a nightmare

because the "exclusions" will not be in a consistent ordering across the components (and sub-components, and

sub-sub-components,...) of this summation. Things would have already got a bit messy notation wise had we done

a formula for a generic X⊥i . So we will have to break this up into several parts. The details are tedious, so they are

relegated to Online Appendix B.1. Those details allow us to explicitly write out the N = 4 special case of interest.

Recall that the setting of interest is including functions { fi(ϵt)}4i=1 in a regression, where ϵt is a shock. The weights

ωi(a) in βi (corresponding to the i-th function) are

ωi(a) =

C1,i −
∑

j ̸=i C1, j
Ci, j−

∑

k ̸= j

Ci,k C j,k
Vk

Vj−
∑

k ̸= j

C2
j,k

Vk

Vi −
∑

j ̸=i

C2
1, j−2Ci, j

∑

k ̸= j

Ci,k C j,k
Vk

+
∑

k ̸= j

C2
i,k C2

j,k

V2
k

Vj−
∑

k ̸= j

C2
j,k

Vk

where Ci, j denotes the covariance between fi and f j , C1,i is the covariance between 1(ϵt≥a) and fi , and Vi is the

variance of fi . This N = 4 case is actually simple compared to the sprawling recursions of the general case.The

representation above also implicitly assumes the functions are mean 0, which need not be the case.

As made explicit at the beginning of Section 3, the goal is to pick functions so that ωi(a) are non-negative,

relevant (don’t put weight where we don’t want), and hump-shaped. The inscrutable form above makes deep

learning a natural solution to the complex function search in the case where we allow the functions to potentially

be correlated.
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A.5 Illustrations of Functions and Their Weights

Figure 12: Neural Network Output with Standard Normal Shocks

Figure 13: Generated Regressor Weights, Standard Normal Shocks

40



A.6 More Application Results

Figure 14: Indicator Function Approach with MP1 Shocks

Figure 15: Indicator Function Approach with MP1 Shocks
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