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These notes follow closely from Chapters 1-7 Rudin’s Principles. They are based on classes I have taken from
Logan Stokols (Duke), David Cruz-Uribe, and Tim Ferguson (both UA). In particular, the topics not covered
in Rudin and the homework problems at the end are from Logan’s class. I would also like to emphasize DCU’s
notes as being particularly helpful and comprehensive. All these instructors were incredible and personable
in their approach/interactions; I can’t thank them enough. As far as the format of these notes, there is little
extraneous discussion or commentary. These are mostly definitions and results stated in a linear fashion.
There is a lot of shorthand used, some of which is defined after the notes. This was crafted with only myself
in mind but may be helpful to others. Also: I corrected the HW problems I was marked off for but cannot
guarantee there are no mistakes
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1 Real and Complex number systems

lots of information skipped for this chapter

A totally ordered set is a set S with a total order <,>,≤,≥ s.t ∀x, y, z ∈ S either x < y or x > y or x = y
and (transitivity) if x < y, y < z =⇒ x < z.
An ordered field is a field F (satisfies usual addition and multiplication axioms, see Rudin) that is an
ordered set and x, y, z ∈ F, y < z =⇒ x+ y < x+ z andx, y ∈ F, x, y > 0 =⇒ xy > 0.

Theorem (Cauchy-Schwarz Inequality) For any ordered field F , ∀x, y ∈ F xy ≤ .5(x2 + y2)

An ordered set S is (Dedekind) complete, or has the least upper bound property, if ∀E ⊆ S bounded above
and nonempty ∃α ∈ S s.t α = supE.

Theorem For x ∈ R andn ∈ N ∃ y ∈ R s.t y = xn

Proof: This is a proof for ∃y ∈ R+ s.t y3 = 3, which can be adapted for the general case by using different
constraints (i.e. w.r.t x andn instead of 3). Define the set E = {x ∈ R+|x3 < 3}. We know supE exists by
the (Dedekind) completeness of R. We want to show that (supE)3 = 3.

Case 1 Define arbitrary α > 1 s.t α3 < 3. We will show α isn’t an upper bound. Let δ = 3 − α3,
implying δ ∈ (0, 1). Fix ϵ > 0 s.t ϵ < δ/(9α2) < δ/9. Note that for n ∈ N\{1} αn > α and ϵn < ϵ. Then

(α+ ϵ)3 = α3 + ϵ3 + 3(αϵ2 + α2ϵ) < α3 + ϵ(1 + 6α2) < α3 + (7δ)/9 < α3 + δ = 3

Therefore, α+ ϵ is not an upper bound of E, so neither is α
Case 2 Now define α ∈ (1, 2) s.t α3 > 3. We will show α is not the least upper bound of E. Let

δ = α3 − 3, so δ ∈ (0, 1). Fix ϵ > 0 s.t ϵ < δ/(6α2) < δ/6. Since ϵ3 > 0, −ϵ2 > −ϵ, and −α > −α2

(α− ϵ)3 = α3 + ϵ3 − 3(αϵ2 + α2ϵ) > α3 − 6ϵα2 > α3 − δ = 3

Therefore, α can’t be the least upper bound because α− ϵ is an upper bound
As mentioned, we know supE exists. Further, supE ∈ R+ from the cases above. Define y = supE. In both
cases, we defined α arbitrarily, meaning that we can make the general statement that for u ∈ R, if u3 < 3 or
u3 > 3, then u ̸= supE. By contraposition, y3 = (supE)3 = 3 ■.

Theorem (Density of Q) ∀x, y ∈ R x > y =⇒ ∃ p ∈ Q s.t x > p > y

Theorem (Archemedian Property) x, y ∈ R+ =⇒ ∃n ∈ N s.t nx > y. Also, ∃m ∈ Q s.t m > x > m−1.

Dot Product x · y =
∑n

i=1 xiyi
For n ∈ N, the n-dimensional Euclidean Space is Rn (n-tuple) with dot product and norm ||x|| =

√
x · x

Theorem (Cauchy-Schwarz) x, y ∈ Rn =⇒ x · y ≤ ||x|| · ||y||
Proof: 0 ≤ ||x+ ty||2 = ||x+ ty||2 = x · x+ 2t(x · y) + t2(y · y) = ||x||2 + (2t)x · y + (t||y||)2
The last term is a non-negative quadratic (∀t), so all D ≤ 0 (discriminants, e.g. 4(x · y)2 − 4||x||2||y||2)
since a quadratic p(t) ≥ 0 ∀t intersects the "real 0" y-axis once or never, so it has one or less real roots

Triangle Inequality x, y ∈ Rn =⇒ ||x+ y|| ≤ ||x||+ ||y||
Proof: ||x+ y||2 = ||x||2x · y + ||y||2 ≤ ||x||2 + 2||x|| · ||y||+ ||y||2 = (||x||+ ||y||)2
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2 Basic Topology

Let f : A → B. If for each y ∈ B, f−1(y) consists of at most one element of A, the f is a one-to-one mapping.
A is finite if ∃ a 1-1 mapping onto a finite set Jn. A is countable if ∃ a 1-1 mapping onto N.

Theorem Let {En} be a sequence of countable sets. Then S = ∪n∈NEn is countable
Proof: Let all En be countably infinite. Consider each En on a row, such that set i’s jth element is in

the i, jth position in an infinite array. However, we can also consider that combining i and j yields a natural
number (e.g. 1010 w/ i = j = 10) and this integer will be unique for every i, j ∈ N. Further, each combination
will yield an integer greater than 11. Therefore, there some subset of N, call it T , such that there is a 1-
1 correspondence from S to T . Because S is a union of countably infinite sets, it must also be countably infinite.

A metric space is a set of points X, together with a metric d : X ×X → R+ ∪ {0} s.t i) (pos. definite)
d(x, y) = 0 iff x = y ii) (symmetry) d(x, y) = d(y, x) iii) triangle inequality w.r.t the metric holds

For a metric space X and r ∈ R+, the (open) ball Br(x) is {y ∈ X|d(x, y) < r}

E ⊆ X is open if ∀x ∈ E ∃ r > 0 s.t Br(x) ⊆ E

Theorem Open balls are open
Proof: X metrix space, x ∈ X, and r > 0. Let y ∈ Br(x), δ = d(x, y) < r, and some ρ ∈ (0, r − δ).
For any z ∈ Bρ(y), d(x, z) ≤ d(x, y) + d(x, z) < δ + r − δ = r. So Bρ(y) ⊆ Br(x).

Theorem If E ⊆ X open, ∃ family of open balls {Bα}α∈I s.t E − ∪α∈IBα

Proof: ∀x ∈ E, ∃ r > 0 s.t Br(x) ⊆ E. Denote this ball as Bx.
Each Bx ⊂ E, so ∪x∈EBx ⊂ E. By ∋ y ∈ E, so E ⊂ ∪x∈EBx

E ⊆ X is bounded if ∃r > 0, x ∈ X s.t E ⊆ Br(x)

For metric space X and E ⊆ X (compliment Ec = X\E),
E◦, the interior of E, is the set of all x ∈ X s.t Bϵ(x) ⊆ E for some ϵ > 0
∂E, the boundary of E, is the set of all x ∈ X s.t ∀ ϵ > 0, Bϵ(x) ∩ Ec, Bϵ ∩ E ̸= ∅
E′, set of all limit points of E, s.t x ∈ E′ iff ∀r > 0, ∃ y ∈ Br(x) where y ̸= x, y ∈ E
E, the closure of E, is the set of all x ∈ X s.t ∀ r > 0, Br(x) ∩ E ̸= ∅
x is isolated if x ∈ E but x /∈ E′

E is dense in X if x ∈ X =⇒ x ∈ E′ and/or x ∈ E

Set Theory Propositions (resulting from above definitions) For any E ⊆ X
a) E is open iff E = E◦

b) E′, ∂E,E ⊆ E
c) p ∈ E′ =⇒ Br(p) contains infinitely many points of E(∀r > 0). E finite =⇒ E′ = ∅.
d) ∂E = E\E◦

e) E = E ∪ E′ = E ∪ ∂E
Proof: First note prop b. Then, for x ∈ E, x /∈ E =⇒ every x-ball contains point of E, can’t be x
itself, so x ∈ E′. Also, every x-ball contains y ∈ Ec, so x ∈ ∂E

E ⊆ X is closed if any of the following hold (iff)
a) E = E
b) E′ ⊆ E (Rudin: every limit point is a point of E)
c) ∂E ⊆ E
d) Ec is open

Proof: (a =⇒ d) If x ∈ Ec, then x /∈ E, so ∃r > 0 s.t Br(x) ∩ E = ∅ (def of closure) or Br(x) ⊆ Ec

Proof: (d =⇒ a) If x ∈ Ec, ∃r > 0 s.t Br(x) ⊆ Ec or Br(x) ∩ E = ∅, so x /∈ E (and x /∈ E)
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Theorem Let {Gα} be a collection of open sets. ∪αGα is open and finite intersections are open. If
{Gα} is a collection of closed sets, ∩αGα is closed and finite unions are closed

Proof: (open) x ∈ ∪αGα =⇒ x ∈ Ga (some a). Ga open =⇒ ∃r > 0 s.t Br(x) ⊆ Ga ⊆ ∪αGα.
Let B ⊆ N be finite and consider {Gβ}β∈B. x ∈ ∩βGβ =⇒ x ∈ Gb ∀ b ∈ B, so ∃rb > 0 s.t Brb(x) ⊆ Gb.
Let r be the minimum of all such r. Then Br(x) ⊆ ∩βGβ

Theorem: E is closed. If E ⊆ F with F closed, then E ⊂ F .
Proof: x /∈ E =⇒ ∃Br(x) s.t Br(x) ∩ E = ∅. Since this is true ∀x /∈ E, E

c
is open, so E is closed.

F closed =⇒ F ′ ⊂ F =⇒ E′ ⊂ F if E ⊂ F . So E ∪ E′ = E ⊂ F
Intersection of all closed sets: from b, E ⊂ ∩F . But E closed and E ⊂ E so taking F = E gives ∩F ⊂ E

A,B are separated if A ∩ B = A ∩ B = ∅. E ⊆ X disconnected if ∃A,B ⊆ X nonempty s.t they
are separated with E = A ∪B. Say A,B separate E. A set which isn’t disconnected is connected

If A ⊆ X closed & open, and ∅ ≠ A ̸= X, then X disconnected
Proof A = A, A

c
= Ac (open =⇒ compliment closed), and A ∩Ac = ∅

If A,B separated, E connected, then E ⊆ A ∪B =⇒ E ⊆ A or E ⊆ B
Proof: E ∩A and E ∩B separated because E ∩A ⊆ A. If both nonempty, E disconnected

If E,F connected and E ∩ F ̸= ∅, then E ∪ F connected

If E connected can draw paths; path connected =⇒ connected, not iff (comb and flea)

X metric space, a connected component A of X is a maximal connected subset : A connected if A ⊆ B ⊆ X
and B connected then A = B

Connected components of X partition X: pairwise disjoint, union is X, and are closed. If X has finitely
many connected components, they are open.

Sketch: ∀x ∈ X, define Ax as the union of all sets E s.t x ∈ X andE is connected. Clearly connect
all of X, can show Ax connected, and ∀x, y, Ax = Ay or Ax∩Ay = ∅. Ex: c.c of Q are singletons {q}( ∀ q ∈ Q)

Every continuous function on [0, 1] is bounded.

An open cover of E ⊆ X is a a collection {Gα}α∈A of open sets Gα of open sets Gα ⊆ X, E ⊆ ∪α∈AGα. A
subcover is a collection {Gβ}β∈B s.t B ⊆ A and it covers E. Cover is finite if A is finite.

E ⊆ X is compact if every open cover has a finite subcover.
{0, 1, .5, .33, .25...} compact. Take 0 off it’s not.

Theorem Compact sets are closed.
Proof: If x /∈ K, then ∀y ∈ K, let ry = d(x, y)/3 > 0. By triangle inequality (ensured by diving through

by 3), Bry (x) ∩Bry (y) = ∅. Infinity problem since boundedness not assumed, so now exploit compactness:
Brz (y)}y∈K is open cover; let {yi}Nn=i centers of a finite subcover. V = ∩i∈[1,N ]Bryi

(x) ⊂ Kc, so Kc open

Theorem Any compact set is bounded.
Proof: Choose any x ∈ X. Then {Bn(x)}n∈N+ is open cover of K. Finite subset of N+ will suffice, let N

be the largest. K ⊆ BN (x)

Theorem Let K ⊆ X compact, E ⊆ K infinite. Then E has limit point in K
Proof: Suppose not. Then every x ∈ K has Bx s.t Bx ∩ E is at most one point (x itself if x ∈ K).

{Bx}x∈K , open cover of K, finite subcover contain at most finitely many (contradiction to infinite assumption).
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E ⊂ Y is open relative to Y if for each p ∈ E ∃ r > 0 s.t q ∈ E =⇒ d(p, q) < r. A set is closed
relative to Y iff its the compliment of a set open relative to Y .

Define an equivalence set [Br(x0)]A by {x ∈ A|D(x, x0) < r}

Theorem E ⊂ Y ⊂ X is open relative to Y iff (for some G ⊂ X open) E = Y ∩ G. E closed rel to
y, then E is closed rel to X iff E ⊆ Y . E ⊆ Y closed rel to Y ⊆ X iff ∃F ⊂ X closed s.t E = F ∩ Y .

Proof: (2nd result) ⇐= Know E = F ∩ Y for some F ⊆ X closed. Then E ⊆ F because F closed and
E ⊆ Y . E ⊂ E ⊂ F ∩ Y , so E = E

Ex:
√
2 ∈ Q ⊆ R, so {x ∈ Q|x ∈ [1, 2]}, closed in Q, not in R

Theorem If K ⊆ Y ⊆ X, then K compact relative to Y iff K compact relative to X
Proof Let {Vα} be an open cover relative to Y , and Uα = Vα ∩ Y . Then {Uα}α∈A open cover relative to

Y has finite subcover for B ⊆ A finite. K ⊆ ∪BUβ ⊆ ∪BVβ (finite subcover)

Theorem E ⊆ K closed, K compact, then E is compact.
Proof: Let {Gα} be an open cover of E. Then union of the open cover and Ec an open cover for K, and

∃B ⊆ A finite that creates a finite cover for both K and therefore E

Finite intersection property (FIP) {Eα}α∈A s.t ∪Eα ⊂ X has FIP if ∀B ⊆ A finite, ∩BEα ̸= ∅

Theorem K compact iff ∀ families of {Eα}a∈A of closed sets with FIP ∩Ea nonempty
Proof: (sketch) same as definition as compact, with *not* everywhere (contrapositive). Take Gα = K∩Eα.

Then {Gα} open cover iff K ⊆ ∪AGα iff ∩Eα ⊆ ∅ (FIP means no finite subcover - always be something outside)

If {Kα} family of compact subsets of X with FIP, then ∩Kα ≠ ∅. (Idea: if X compact done. If ∪Kα

compact, done. Since care about ∩Kα "all action" happens in each/all Kα)
Proof: Fix any K0 ∈ {Kα}α∈A. Set Eα = Kα ∩K0. {Eα} closed subsets of K0 compact. For B ⊆ A,

∩BEα = K0 ∩ (∩BKα). Nonempty for B finiifte therefore non-empty for B = A.

Theorem Define real numbers a < b then [a, b] compact.
Proof: Suppose {Gα} open cover of [a, b] with no finite subcover. So at least [a, c] or [c, b] must have

no finite subcover. Define iteratively [an+1, bn+1] ⊂ [an, bn], so |bn − an| ≤ 2−n|b − a|. Since an < b,
x = sup{an|n ∈ N} exists. Notice an ≤ x ≤ bn. Also, any bn ∈ B21−n|b−a|(x). Some Gα contains x, so there
exists r > 0, Br(x) ⊆ Gα. Take n s.t 21−n|b− a| < r and [an, bn] ⊆ Gα.

Any bounded closed subset of R is compact.

Heine-Borel any closed and bounded subset of Rk is compact.

(weirstrauss corallary). Any bounded infinite E ⊆ Rn has limit point.

Theorem If E ⊆ Rn and every infinite subset of E has limit point, then E compact
Proof: For each k ∈ N, if E∩{x|x ∈ (k, k+1)} is nonempty, choose element, call it xk. Then the collection

of these has no limit point (all isolated since we’re choosing for each natural number), must be finite (by
the Archemedian property since E ⊆ Rn), so E bounded. So let x ∈ E′. For k ∈ N, choose xk ∈ B 1

k
(x) ∩ E.

Then {xk} infinite for limit y ∈ E. Assume x ̸= y, let 0 < ϵ = d(x, y)/3.

d(y, xk) ≥ d(x, y)− d(x, xk) = 3ϵ− d(x, xk) > 3ϵ− 1/k

If k > 1/ϵ, xk /∈ Bϵ(y). So Bϵ(y) ∩ {xk} finite
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3 Sequence and Series

Sequence (pn) is a map f : N → X, denoted by f(n) = pn. Range of sequence is {pn|n ∈ N}

pn converges to p (pn → p) if ∀ϵ > 0 ∃N s.t n > N =⇒ d(pn, p) < ϵ
Difference between limit point and range: (.5,−3, 1/3,−3, .25, . . . ) 0 is limit point of range, but not (pn)

Formally, we say a sequence is divergent if the sequence is unbounded or if there is no p that satisfies
the above definition (i.e. we do not consider ±∞ a possible limit point )

xn → x iff every ball of x contains all but finitely many xn

Theorem E ⊆ X is closed iff ∀ sequences (xn) in E xn → x =⇒ x ∈ E
Proof: xn → x andx ∈ E =⇒ ∃xm ∈ Br(x) (some m ∈ N and ∀ r > 0), so x ∈ E =⇒ ∀n ∈ N choose

xi ∈ B1/n(xn), xn → x by archemdian property (ball shrinks to "0 radius"). If closed E contains all its lps

Bc of > N definition, infinitely many points clustered around limit. x ∈ E isolated =⇒ x /∈ E′.

Theorem Limit of sequence is unique
Proof: xn → p andxn → p =⇒ ∀ϵ > 0 ∃M,N ∈ N s.t d(xn, p) < .5ϵ and d(xn, q) < .5ϵ. Then by

triangle inequality ∀n > max{M,N} d(p, q) ≤ d(p, xn) + d(q, xn) = ϵ. (use positive definite of metric).

A sequence is bounded if its range is bounded.

Theorem Any convergent sequence is bounded
Proof: xn → x =⇒ ∃N s.t d(xn, x) < 1(∀n > N). Then the sequence of distances between x and xi

i ∈ [1, N ] is finite. Let R be the max (well-defined since convergence in R implicit)

If an, bn sequences and an ≥ bn for all but finitely many n ∈ N, or if (bn) = aN , aN+1, . . . , then ei-
ther an, bn both divergent or their limits are equal

xn → x. If n > N =⇒ d(xn, x) < ϵ, then m > N =⇒ d(xn, xm) < 2ϵ

A sequence is cauchy if ∀ϵ > 0 ∃N s.t m,n > N =⇒ (dn, dm) < ϵ (convergent =⇒ cauchy)

A space (X, d) is (Cauchy) complete if every cauchy sequence in X is convergent in X

Theorem Compact sets are complete
Proof: Let (xn) be cauchy in K compact. If ∃y s.t xn ≤ y for infinitely many n ∈ N, then xn → y.

Assume WLOG no xn repeat infinitely often. Let EN = {xn|n > N}. Each EN infinite and EN ⊆ K is
compact, has FIP, so ∃x ∈ ∩NEN . Fix ϵ > 0. Let M s.t n,m > M =⇒ d(xn, xm) < .5ϵ. Then x ∈ EM ,
so B.5ϵ(x) contains an element of the sequence. Then the distance between this point and x will be < ϵ

If X ⊆ Y metric space, Y complete and X = Y , then call (Y, d) the cauchy completion of (X, d).

Theorem Every space has a cauchy completion
Proof: (sketch) Points of Y will be equivalence classes of Cauchy sequences (i.e. if we combine sequences,

resulting sequence is Cauchy) in X. Define the LIM Xn the formal limit of every Cauchy (Xn) in X. If
xn → x, LIM Xn represents x. Define a metric

d(LIMan, LIMbn) = lim d(an, bn)

The limit is cauchy in R, so the d term exists. Set LIMan = LIMbn if d = 0. Set Y = {LIMxn|(xn) Cauchy sequenceinX}.
For x ∈ X, identify x ∼ LIM(x), so X ⊆ Y . Must show d is a metric, d(x, y) = d(LIM(x), LIM(y), X
dense in Y , (Y, d) is cauchy complete.
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xn sequence in (X, d) and nk sequence in N s.t n0 < n1 < . . . . Then (xn,k)k∈N is a subsequence of
(xn). If xn,k

k→ y, call y subsequential limit of xn.
Alternative notation: A ⊆ N, A infinite, (xn)n∈A is a subsequence corresponding to A = {nk|k ∈ N}

xn → x iff every subsequence converges to x. Idea: if xn → x, points in the subsequence have to be
in there at some point (infinite subset of N). If x ̸→ y ∃ ϵ > 0 s.t {n ∈ N|xn /∈ Bϵ(y)} is infinite.

Theorem If x limit point of range (xn) then x is a subsequential limit of (xn) (Converse false)
Idea: xnk

⊂ B1/k(k). Make some nk > nk−1. This also implies that if (xn) sequence in compact space K,
(xn) has a convergent subsequence.

Bolzano Weirstruass Bounded sequences in Rn have convergent subsequences.

Theorem For any seq(xn), set of all subsequential limits is closed. (but not because E′ is closed). Not all
subsequential limits are limit points.

Proof: Let {Ai}i∈N ⊂ N be infinite indexing sets (used to create subsequences) and yi be a corresponding
subsequential limit (xn

Ai→ yi) with yi → y. Let Aj
i be the j− 1th element of the i− 1th subsequence indexing

set and h0 = A0
0. Define a subsequence by, given nk−1, taking nk ∈ Ak (nk > nk−1) s.t d(xnk

, yk) < 2k.

d(xnk
, y) ≤ d(xnk

, yk) + d(yk, y) ≤ 2−k + ϵ/2 < ϵ

if you fix ϵ > 0 and take N ∈ N s.t 2−N < .5ϵ, with d(yk, y) < .5ϵ by the definition of a limit.

Sequences in Rd. −→x n → −→x iff limxi
n = xi for 1 ≤ i ≤ d. If −→x n → −→x (likewise for y), then (−→x +−→y ) = −→x +−→y .

Same for inner product, scalar multiplication.

Monotone sequences. an ≤ an+1 monotone increasing, and monotone decreasing for ≥. Strictly mono-
tone if the inequality is not strict.

Theorem Monotone sequence has a limit iff its bounded

The extended real numbers are not a metric space. If xn → ±∞ say it diverges.

A sequence in R is unbounded iff it has a subsequence tending to ±∞

For EN = {xn|n ≥ N}, (supEn)n is decreasing and (inf En)n is increasing.
Define lim supxn = lim xn = lim(supEn) and lim inf xn = lim xn = lim(inf En)

lim supxn, if finite, is least number α s.t ∀ϵ > 0 ∃N s.t n > N =⇒ xn < α+ ϵ

Theorem Let y be the subsequential limit of xn. Then y ∈ [lim inf xn, lim supxn]
Proof: y − lim supxn = ϵ > 0. Then ∃N s.t sup{xn|n > N} < lim supxn + .5ϵ. Thus n > N =⇒

xn < y − .5ϵ and B.5ϵ(y) contains at most finitely many (≤ N) xn (contradiction). Analogous for lim inf.

lim inf xn ≤ lim supxn. (If bounded, B-W y exists. For unbounded, do cases)

For (xn) in R, ∃A,B ⊆ N s.t xn
A→ lim supxn andxn

B→ lim inf xn

Proof: Fix ϵ > 0. Let α = lim supxn finite. Take n0 = 0 and given nk−1 take N > nk s.t sup
n≥N

xn ∈ Bϵ(α).

Then take nk > N s.t xnk
≥ sup

n≥N
xn − ϵ. If a = ∞, range(xn) not bounded above, has subsequence that

limits to ∞, similar for bounded above.

If (xn) in R, E is a set of subsequential limits in Rk, then lim supxn = supE and lim inf xn = inf E.
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Proof: let α = lim supxn. By previous α ∈ E, so α ≤ supE. WTS α ≥ supE. ∀N ∈ N, let
yN = supn≥N xn ∈ RK . ∀n ∈ N, yn ≥ xn. Also yn → α by definition, all subsequential limits are cinvergent

to α as well. If xn

→
Ax ∈ RK then x ≤ α

3.1 Series

Given (xn) in Rd and N ∈ N, denote SN =
∑N

n=0 xn partial sums. Define infinite sum by limSN .

Theorem If the infinite sum conv (converges - limit of partial sums exists), then xn → 0

Converse of above theorem false – the harmonic series
∑

1/n diverges. One way to see this is that the partial
sums aren’t Cauchy: |S2N − SN | = |

∑@N
1/n−

∑N
1/n| =

∑2N
N+1 1/n ≥ .5N

∑2N
N+1 1 = .5

If
∑

an = A and
∑

bn = B,
∑

an + bn = A+B.

Theorem For r ∈ C,|r| < 1 yields
∑∞

n=0 r
n = 1

1−r (diverges otherwise)

Theorem If p > 1,
∑

1/np converges; diverges otherwise

Comparison test: let (an), (bn) ∈ Rd with 0 ≤ ||an|| ≤ bn.
∑

bn convergent =⇒
∑

an convergent.
Proof: set AN =

∑N
an. Fix ϵ > 0. Since

∑
bn cauchy, ∃N s.t

∑q
n=p bn < ϵ ∀N ≤ p ≤ q. So ∀M > N

||AM −AN || = ||aM + . . . aN+1|| ≤
M∑

i=N−1

||ai|| ≤
q∑

n=p

bn < ϵ

Theorem If (an), (bn) ∈ R s.t 0 ≤ an ≤ bn and
∑

an divergent, then
∑

bn divergent.

n2 ≤ 2n. Every geometric series is bounded by
∑

1/N for N sufficiently large.

(Limit comparison test) Let (an), (bn) ∈ R+. If the limsup of an/bn < ∞ and bn converges, then
∑

an
converges. If the lim inf of the ratio is positive and

∑
bn diverges, so does

∑
an.

Proof: lim sup an

bn
= R. Then ∃N s.t n ≥ N =⇒ an

bn
≤ R+ 1. So an < (R+ 1)bn; use comparison test.

Intuition from limit comp test only goes so far: given
∑

xn divergent ∃(an) s.t lim sup an

xn
= 0and

∑
an

diverges. Given
∑

yn convergent, ∃(bn) s.t lim inf bn
yn

= ∞ and
∑

bn converges. See HW6 #4 (partial sums).

Big/little o notation: an = O(bn) if lim sup an/bn < ∞; an = o(bn) if lim sup an/bn = 0

(Ratio Test) If lim sup an+1/an < 1 then
∑

an convergent. If > 1, divergent
Proof: Let lim sup an+1/an = λ < 1. Take r = .5(1 + λ). Then ∃N s.t ∀n > N an+1/an < r, so

aN+M ≤ rMaN and
∑∞

n=N an ≤
∑∞

n+N anr
n convergent.

(Root Test) Given
∑

an, set λ = lim sup(an)
1/n. Then

∑
an convergent if λ < 1, divergent if > 1.

Proof: If λ < 1, set r = .5(1 + λ). ∃N s.t ∀n ≥ N an ≤ rn, convergent

Note =1 ambiguous for both, but the root test strictly better. Suppose λ < ∞ is the ratio test value.
Then ∃N s.t an+m ≤ (λ+ ε)maN . So the root test value is less than λ+ ε and thus less than ratio test value.∑

an converges absolutely if
∑

||an|| conv. Convergent
∑

an converges conditionally if
∑

||an|| doesn’t conv

Abs conv stronger than conv and our tests don’t like conditional conv (cc always yields root test = 1)

(Alt Series Test) Let (an) be a decreasing, non-negative sequence with lim an = 0.
∑

(−1)n+1an conv
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Proof: S2N = (a1 − a2) + (a3 − a4) + . . . , S2N+1 = a1 − (a2 − a3) − (a4 − a5). 0 ≤ S2N ≤ S2N+1 ≤ a1.
Bounded so both conv by monotone convergence. Limit of their difference is the limit of a2N+1, which is 0.

Say
∑

xn conditionally convergent. The sum of only its positive terms is unbounded (same with negative).
Idea: divide the terms between an > 0 and bn < 0. Thus

∑
|xn| =

∑
an −

∑
bn diverges.

∑
an and

∑
bn

can’t both converge, in fact both diverge.

Define k(n) : N → N 1-1. Then for bn = ak(n),
∑

bn is a rearrangement of
∑

an

Theorem If
∑

an = A converges absolutely, then every rearrangement of
∑

an also converges to A.
Proof: Let r be the rearrangement bijection and fix ϵ > 0. Then ∃N s.t

∑∞
n=N |an| ≤ ϵ. Take

M = maxi∈[1,N ] r(N). Then |
∑∞

i=M ar(n)| ≤
∑∞

n=N |an| < ϵ.

Theorem (Riemann rearrangement) If
∑

xn is conditionally convergent, there exists rearrangements where
the rearranged series converges to ±∞ and any real number.

Idea: Let A andB be the set of indices of pos/negative terms respectively. Define an = xm, where m in
the nth term in A, and bn = −xm similarly. (e.g. A = {3, 7, 11..} → (x3, x7, x11)). Know xn → 0, so same for
an, bn. Take N s.t n > N =⇒ bn < .5. Take tk s.t

∑tk
n=1 an > k. (bc sum diverges). For n > tk +N + k,

partial sum is greater than C − k+ k/2 → ∞ (sum of b1 to bN is C). For λ ∈ R+, take # of an to get beyond
λ, then minimum number of bn to go back, and so on. Similar consideration for λ ∈ R−

Let (an) ∈ C. A power series is a function which assigns to z ∈ C the series
∑

anz
z = a0 + a1z + . . . . For

D = {z|
∑

anz
n convergent}, the power series defines a function D → C.

Notable Examples:
∑

zn/n! = ez, (−1)nz2n+1/(2n+ 1)! = sin(z)

Theorem For
∑

anz
n power series, ∃R ∈ [0,∞] s.t

∑
anz

n converges absolutely in |z| < R and diverges
otherwise. Define radius of convergence as R = lim sup |an/an+1| (if converges, otherwise R = (lim sup |an|1/n)

Convergence on boundary nebulous; if the components converge then the whole thing does

For p ∈ [1,∞], the p-norm on Rn is ||x⃗||p = (|
∑

xi|p)
1
p .

Theorem For any x ∈ Rd and 1 ≤ p ≤ q ≤ ∞ ||x||q ≤ ||x||p ≤ d
1
p−

1
q ||x||q.

Define the metric space (X, d) to be with respect to the p-norm. Most properties (open, convergent,
compact, cauchy, connected) hold in the 2-norm iff they hold in the p-norm

Infinite dimensional vector spaces: Let ∪∞
n=1Rn = RN

Idea: R ⊆ R2. So generalizing this further, n < m =⇒ Rn ⊆ Rm by (x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Let p ∈ [0,∞] with q ∈ R. In (RN, p), ( 1
nq ) is Cauchy if pq > 1 and unbounded if pq ≤ 1. Bounded,

not Cauchy if pq = ∞ · 0.
Proof: ||an||p =

[∑n
i=1

1
in

]1/p and for n < m ||am − an||p =
[∑m

i=n+1
1
in

]1/p. For p = ∞, ||an||∞ is 1 if
q ≥ 0 and n−q otherwise. So bounded iff q ≥ 0. ||an − am||∞ = max{n−q,m−q}, so Cauchy iff 1/p → 0

Theorem For p ∈ [1,∞] (RN, p) is not complete.

R∞ is the set of all sequences in R. Identify (x1, . . . , xd) ∈ RN. Now we can formally consider RN se-
quences with finitely many non-zero terms. Moreover, R∞ is a vector space

For p ∈ [1,∞], a ∈ R∞, denote ||a||p = |
∑∞

n=0(a
n)p|1/p ∈ R∗ and ||a||∞ = supn |an| ∈ R∗.

For p ∈ [1,∞], denote ℓp − {a ∈ R∞
∣∣ ||a||p ≤ ∞}. Then ℓp is a metric space with p-norm.

And for any p ∈ [1,∞],RN ⊆ ℓp ⊆ R∞
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Let a ∈ R∞, an = (a0, . . . , an, 0, 0, . . . ) ∈ RN. Then a ∈ ℓp (p < ∞) iff an → a in ℓp

Sketch: a ∈ ℓp iff
∑

|an|p conv. an → a iff
∑∞

N |an|p N→ 0

Theorem For p ∈ [1,∞), ℓp is the completion of RN with the ℓp norm.
Proof: Let (an) ∈ ℓ1 be Cauchy. WTS ∃a ∈ ℓ1 s.t an → a. Let akn be the kth element of the nth sequence.

Let akn
n→ ak ∈ R (can do this since because partial sums will be cauchy). Now define a = (a1, a2, . . . ) ∈ R∞.

We know it’s in ℓ because we can define R strictly greater than its norm (so will be greater than sum of first
k components for all k). Cannot take straightforward limit because each k needs different N . However, we
can define a N with respect to ||an − am||, use an absolute sum taking a limit in m, then taking an infinite
sum with sup over all n, giving us what we want.
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4 Continuity

Let f : X → Y a function. we denote Y the codomain for E ⊆ X

f(x) is the image. For E ⊂ Y , the inverse image f−1(E) = {x ∈ X|f(x) ∈ E}

For f : E → y with p ∈ E′ and E ⊂ X, say lim
x→p

f(x) = y if ∀ε > 0 ∃ δ > 0 s.t x ∈ E with x ̸= p,

dX(x, p) < δ =⇒ dY (f(x), y) < ε

Let S1 = {z ∈ C||z| = 1} (unit circle) and define arg : S1 → [0, 2π). limz→1 arg DNE.
∀δ > 0, ei

δ
2 , ei(2π−

δ
2 ) ∈ Bδ(1). But d(x, y) = 2π > ε

p ∈ E′, lim
x→p

f(x) = y iff ∀(xn) ∈ E, limn xn = p, xn ̸= p ∀n =⇒ lim f(xn) = y

Proof: ( ⇐= ) Suppose the limit is not y: then ∃ε > 0 s.t ∀δ ∃x ∈ Bδ(p) where d(f(x), y) ≥ ε. For each
n, take xn ∈ Bδ(p) s.t d(f(xn), y) ≥ ε. Then f(xn) does not converge to y

So limits are unique: a and b both lim
x→p

f(x) = y, a = b. "Vacuously" continuous at isolated points

f is continuous at p ∈ E if ∀ε > 0 ∃ δ > 0 s.t ∀x ∈ E where dX(x, p) < δ =⇒ dY (f(x), f(p)) < ε

Earlier limit definition: undefined if p /∈ E′. Continuity guarantees everything in a small enough nbhd is a lp

Theorem f : X → Y continuous iff ∀U ⊂ X open =⇒ f−1(U) ⊂ X open

f continuous iff pre-images of closed sets are closed

Theorem Composition of continuous functions are continuous
WTS X

f→ Y
g→ Z

Proof: (1): Fix ε > 0, p ∈ X. Since g continuous, ∃η > 0 s.t dY (f(p), y)) < η =⇒ dZ(g ◦ f(p), g(y)) < ε.
Since f continuous, ∃δ > 0 s.t dX(p, x) < δ =⇒ dY (f(p), f(x)) < η =⇒ dZ(◦, ◦) < ε

Proof: (2) Let xn → p ∈ X. Then f(xn) → f(p). g(f(xn)) → g(f(p)).
Proof: (3) Let U ⊂ Z open. Then g−1(U) ⊂ Y open, so f−1(g−1(U)) ⊂ X open

If lim
x→p

f(x) = y for f : E → Y , p ∈ E′, and g : Y → Z cont lim
x→p

g ◦ f(x) = g(y)

Theorem + : R2 → R s.t +(a, b) = a+ b is continuous
Proof: +((xn, yn)n) → xn + yn → x+ y = +((x, y))

A function is bounded if its image is bounded. Continuous function on a compact domain is bounded.

Theorem For f : K → Y continuous, K compact, f(K) is compact
Proof: Let {Ga}a open cover of f(K). WTS {f−1(Ga)}a open cover of K. Each f−1(Ga) is open. For

x ∈ K, f(X) ∈ f(K) so ∃α s.t f(x) ∈ Gα, so x ∈ f−1(Gα).
So ∃A finite s.t K ⊂ ∪a∈Af

−1(Ga). ∀y ∈ f(K) ∃x ∈ K s.t y = f(x). So ∃alpha ∈ A s.t x ∈ f−1(Gα), so
y = f(x) ∈ Gα. So {Gα}α∈A is a finite subcover.

Let f : K → Y surjective, K compact. If U ⊂ K open, then f(U) open. If f bijection, f−1 : Y → K continuous

A function f : X → Y is uniformly continuous if ∀ε > 0∃δ > 0 s.t dx(x, y) =⇒ dy(f(x), f(y))

Theorem Let f : X → Y uniformly continuous, (xn) cauchy in X. (f(xn)) Cauchy in Y
Proof: Fix ε > 0. ∃δ s.t dx(a, b) < δ =⇒ dY (f(a), f(b)) < ε. Moreover, ∃N s.t m,n > N =⇒

dX(f(xn), f(xm)) < δ =⇒ dY (f(xn), f(xm))
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Theorem f : K → Y continuous, K compact, then f uniformly continuous.
Proof: Fix ε > 0. ∀x ∈ K, define rx s.t Brx(x) ⊂ f−1(B ε

2
f(x)), so {B rx

2
(x)} open cover. Over finite sub-

cover, take δ = min
rxn

2 . If dX(x, y) < δ ∃xn s.t d(x, xn) <
rxn

2 . So d(xn, y) < rxn
and dY (f(x), f(y)) < ε

Theorem Let E ⊆ X, f : E → Y , p ∈ E. If f unif cont and Y complete, then limx→p f(x) exists.
Proof: Let (an) ∈ E, an → p, an ̸= p ∀n. Then (an) cauchy, (f(an)) Cauchy, limit exists call it y. Let

(bn) ∈ E, bn → p, bn ̸= p ∀n. Then (a0, b0, a1, b1, . . . ) → p, cauchy. By thrm the seq-function converges to y

Theorem Let E ⊆ X. f : E → Y uniformly continuous, Y complete. Then ∃f : E → Y continuous
where f(x) = f(x) ∀x ∈ E (see HW for proof)

Theorem f : X → Y continuous, X connected, then f(X) connected
Proof: Proof by contradiction: A,B ⊆ Y , f(x) ⊆ A∪B, A∪B = B ∪A = ∅. Then X ⊆ f−1(A)∪ f−1(B)

and f−1(A), f−1(B) disjoint.

(IVT) f : X → R continuous,X connected , ∃a, b ∈ X s.t r ∈ (f(a), f(b)) =⇒ ∃c s.t f(c) = r

Theorem E connected iff ∀f : E → {0, 1} continuous =⇒ f(E) = 0 or f(E) = 1
Proof: ( ⇐= ) E disconnected, so E = A ∪B, disjoint, clopen, nonempty.

A set E is path-connected iff ∀a, b ∈ E ∃ f : [0, 1]] → b continuous s.t f(0) = a, f(1) = b.
Theorem Path-connected iff connected

For f : R → R, p ∈ R, define g : (−∞, p) → R andh(p,∞) equal to f on their domains. limit "from
the right" x → p+ is defined as limx→p h(x), similarly "from the left" x → p− with g. Cont iff limits equal

"Simple" discontinuity : removable ("hole") & jump (e.g piece wise). "Essential": limit from left or right DNE

Theorem Monotone functions can’t have infinitely many or non-jump discontinuities
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5 Derivatives (f : R → R)

Derivative of f at a ∈ R is f ′(a) = d
dxf(a) = lim

x→a

f(x)−f(a)
x−a = lim

h→0

f(x+h)−f(x)
h .

If f derivative exists ∀a ∈ U open, f is differentiable on U

Theorem If f is differentiable at a, then f is continuous at a
Proof: Since f ′(a) exists, lim

x→a
f(x)− f(a)

Theorem (Prod/Quotient Rules) (fg)′(p) = f ′(p) · g(p) + f(g) · g′(p) and(1/f)′(p) = −f ′(p)/f(p)2

Theorem (Chain Rule) f : U → R, f(U) ⊂ V open,g : V → R. Assuming existance, (g◦f)′(p) = g′◦f(p)·f ′(p)

Theorem (Rolle’s) f : [a, b] → R cont and diff. If f(a) = f(b), then ∃c ∈ (a, b) s.t f ′(c) = 0

(MVT) Corollary to Rolle’s without f(a) = f(b) condition: ∃c ∈ (a, b) s.t f ′(c)(b− a) = f(b)− f(a)

f : X → Y is Lipschitz:if ∃M > 0 s.t ∀x, y ∈ XdY (f(x), f(y)) ≤ MdX(x, y)

Theorem For f : U → R diff w/ U cnctd, if ∃M ≥ 0 s.t |f ′(x)| ≤ M∀x ∈ U , f is lipschitz

Lipschitz gives some information on the rate of convergence, more than just differentiable at a point
Theorem If f diff at p, ∃M ≥ 0, r > 0 s.t |f(x)− f(p)| ≤ M |x− p| ∀x ∈ Br(p)
BUT Lipschitz weaker than continuity in terms of =⇒ differentiability.;f(p) + f ′(p)(x− p) is tangent line.

a+ b(x− p) is the best linear approx of f at p if lim
x→p

∣∣∣ f(x)−[a+b(x−p)]]
x−p

∣∣∣ = 0

Theorem For f : U → R cont at p ∈ U best linear approx iff f diff at p, a = f(p), b = f ′(p)

With f (n)(x) = dn

dxn f(x), for f n-diff at P , nth degree Taylor polynomial is Tn
p (f)(x) =

∑n
i=0

1
i!f

(i)(p)(x−p)
As n gets larger, the error between the approximation and the function goes to 0

Let f(b) = f(a) = f ′(a) = ... = fn−1(a) = 0, fn(c) = 0 (consider Rolle’s), then ∃c s.t f (n)(c) = 0

Theorem (Taylor) Let α, β ∈ (a, b). ∃z ∈ (α, β) s.t f(β) = Tn−1
α + f(n)(z)

n! (β − α)n

Theorem (L’Hopital) For f(x) = g(x) = 0, existence of deriv, and g′(x) = 0. limt→x
f(t)
g(t) = f ′(x)

g′(x)

Theorem If f : U → R n-times diff at p ∈ U , and p : R → R degree n-polynomial then limx→o |f(x) −
q(x)|/|(x− p)n| = 0 iff Q = Tn

p (f)
Proof: By L’hopital (see Rudin for a stronger statement)

lim
x→p

f(x)− Tn
p (f)(x)

(x− p)n
= · · · = lim

f (n−1)(x)− f (n−1)(p)− f (n)(p)(x− p)

n!(x− p)
= 0

If Q is best polynomial approximation, add and subtract Tn
p (f)(x) from given limit so Tn

p −Q

(x−p)n → 0. But
[Tn

p (f)−Q](x) = a0 + a1(x− p) + · · ·+ an(x− p)n then limit converges iff all the coefficients are equal.

The Taylor series for f at p is the power series Tp(f)(x) =
∑ f(n)∗p)

n! (x− p)n.

If ∃R > 0 s.t Tp(f)(x) = f(x) ∀x ∈ BR(p) call f analytic at p. Are infinitely diff.

Theorem Let f : [a, b] → Rn cont diff on (a, b) w/ ||f ′|| ≤ M . ||f(b)− f(a)|| = M |b− a|
Proof: Let v ∈ Rn. By MVT |v(b− a)−1(f(b)− f(a)| ≤ sup(v · f ′) ≤ ||v||M . Take v = f(b)− f(a)

13



6 Integration

A partition of [a, b] ⊆ R is a finite set of points P = {xi}ni=0 s.t P = {a = x0 < x1 < · · · < xn = b}

Given partitions P,Q if P ⊆ Q, Q is a refinement of P . P ∪Q is common refinement

Given partition P , if ti ∈ [xi−1, xi] (i ∈ [1, n]), P is a tagged partition with tags {ti}

Given tagged partition P , let ∆i = xi − xi−1, Ii = [xi−1, xi], and S(f, P ) =
∑n

i=1 f(ti)∆i be the Rie-
mann sum. Define mi = inf{f(x)|x ∈ Ii} andMi = sup{f(x)|x ∈ Ii}. Define the upper and lower Darboux
sums by L(f, P ) =

∑n
i=1 mi∆i andU(f, P ) =

∑n
i=1 Mi∆i. Note L(f, P ) ≤ S(f, P ) ≤ U(f, P ).

Denote the lower Darboux integral by
∫ b

a
f = supP L(f, P ) and similarly for upper integral. If they are both

equal to some C ∈ R, f is integrable and
∫ b

a
f − C

Given α : [a, b] → R increasing and P part, denote αi = α(xi) (xi ∈ P ). Define L(f, P, α) =
∑n

i=1 mi[αi−αi−1]

and
∫ b

a
fdα = supP L(f, P, α) (similar for U(f, P, α). If equality exists, common value

∫
fdα is Stieltjes

integral and say f ∈ R(α). Notice α(x) = x yields Darboux. Define f ∈ R Darboux integrable.

Let f : [a, b] → R bounded, P,Q part s.t. P ⊆ Q. Then L(f, P, α) ≤ U(f,Q, α) and L(f,Q, α) ≤ U(f, P, α)

The above result yields for any partitions P,Q L(f, P, α) ≤ U(f,Q, α)
Proof: L(f, P, α) ≤ L(f, P ∪Q,α) ≤ U(f, P ∪Q,α) ≤ U(f,Q, α)

f ∈ R(α) iff ∀ε > 0 ∃P s.t U(f, P, α)− L(f, P, α) < ε

Theorem If f : [a, b] → R cont, α inc, then f ∈ R(α)
Proof: Let L = (α(b) − α(a))−1 and fix ε > 0. ∃δ > 0 s.t |x − y| < δ =⇒ |f(x) − f(y)| < ε. Let

P s.t ∆i < δ ∀ i. Then Mi −mi ≤ Lε, so [U − L](f, P, α) ≤ Lε(αi − αi−1) ≤ ε

Theorem Let g : [a, b] → R bounded, f : R → R. If g ∈ R(α), f cont, then f ◦ g ∈ R(α)
Proof: If P s.t [U −L](g, P, α) small, then ∀i either Mi −mi small, or αi − αi−1 small. If Mi −mi small,

f(Mi) − f(mi) small; f doesn’t matter much. WLOG f uniformly continuous (since g bounded). Take
ε, δ s.t supIi g(x)− g(y) < δ =⇒ sup f ◦ g(x)−f ◦ g(y) < ε. [U −L](g, P, α) ≥

∑
i s.t Mi−mi>δ δ(αi−αi−1).

Let K = sup f ◦ g − inf f ◦ g. Then [U − L](f ◦ g, P, α) ≤ ε[α(x) − α(y)] +
∑

Mi−mi>δ K[αi − αi−1] ≤
ε[α(x)−α(y)]+ [U −L](g, P, α)Kδ−1. This bound holds for all partitions so ∃P s.t [U −L](g, P, α)Kδ−1 = 1

Theorem Stieltjes integration preserves monotonicity (α incr)

Theorem Let ϕ : R → R cont and strictly incr. f, α : [ϕ(a), ϕ(b)] → R, f ∈ R(α). Then g = f · ϕ
and β = α · ϕ yield g ∈ R(β). Moreover,

∫ b

a
gdβ =

∫ ϕ(b)

ϕ(a)
fdα

Proof: For P partition of [a, b], Φ(P ) = {ϕ(xi)} is a partition of [ϕ(a), ϕ(b)]. U(f,Φ(P ), α) = U(g, P, β)..

Consider α diff on [a, b]. αi − αi−1 = αi − αi−1 · (∆i/(xi − xi−1)) = α′(ti)∆i (some ti ∈ Ii)

Theorem Let f, α : [a, b] → R with α′ : (a, b) → R cont. f ∈ R(α) iff fα′ ∈ R and
∫
fdα =

∫
fα′

If f(x) = g(x) ∀x ̸= p then
∫
fdα =

∫
gdα if α cont at p

Given f : [a, b] → R, P partition, the variation of f over P is V (f,P) −
∑n

i=1 |f(xi) − f(xi−1)|. The
total variation of f is TV (f) = supP V (f,P). If TV (f) is finite, f has bounded variation; "f is BV"
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If f monotone, TV (f) = |f(b)− f(a)|. So the sum of montone functions (on a closed interval) is BV

Theorem (Jordan Decomposition) f is BV iff its equal to the sum of inc and dec fun.
Proof: ( =⇒ ) ft = f restricted to [a.t]. Then TV (fx) increasing. Given c < d, let P partition of [c, d].

f(d)− f(c) =
∑

f(xi)− f(xi−1) ≤
∑

|f(xi)− f(xi−1)| = TV (fd)−TV (fc). f(d)−TV (fd) ≤ f(c)−TV (fc).
So f(x) = TV (fx) + [f(x)− TV (fx)], a sum of incr and decr.

Let f, α : [a, b] → R, α BV, P partition s.t. Mi −mi < ε with {ti}, {si} tags. Then |
∑

f(ti)[αi − αi−1]−∑
f(si)[αi−αi−1]| ≤ εTV (α). So integrate with BV weights if α monotonic. If α (BV) not monotonic, use JD

such as: α = α+ − α−, incr and decr function. Define
∫
dα =

∫
fdα+ −

∫
fdα−. So R(α) = R(α+)∩R(α−).

Formalizing this, let α BV. If f ∈ R(α), ∀ε > 0 ∃P tagged partition s.t |
∫
fdα−

∑
(ti)p[αi − αi−1]| < ε

Proof: Use use above decomposition, triangle ineq, and then P that works for both α+, α−

(FTC 1) Let f ∈ R on [a, b] and F (x) =
∫ x

a
f . For, F cont and f cont at p, F ′(p) = f(p)

Proof: Since f bounded, |f | ≤ M (some M , so |
∫ x

a
f −

∫ y

a
f | = |

∫ x

y
f | ≤ M |x− y|, so Lipschitz continuous.

So F (x)− F (p) =
∫ x

p
f =

∫ x

p
f(p) +

∫ x

p
[f − f(p)] = f(p)(x− p) + E. So f(p) = f ′(p) iff E = o(x− p). If f

cont at p, for ε > 0 ∃δ > 0 s.t x = Bδ(p) =⇒ |f(x)− f(p)| < ε and |E| ≤ ε|x− p|

(FTC 2) Let f ∈ R on [a, b] and f : [a, b] → R, f ′ ∈ R. Then f(b) = f(a) +
∫ b

a
f ′

Proof: By MVT, ∃ tags of P s.t
∑

f ′(ti)∆i =
∑

f(xi) − f(xi−1) = f(b) − f(a). Thus L(f ′, f) ≤
f(b)− f(a) ≤ U(f ′, f). Assume L− U → 0

(Int by Parts) For f.g : [a, b] → R w/ f ′, g′ : [a, b] → R (∈ R),
∫
f · g′ = fg|ab −

∫
f ′ · g

Proof: Product rule + FTC:
∫
(f · g)′ =

∫
f · g′ +

∫
f ′ · g = f(b)g(b)− f(a)g(a)

To bring Stieltjes in (doesn’t apply to FTC in general), consider f ∈ R(α), f diff. For P partitions∑
[(fα)i − (fα)i−1] =

∑
fi[αi − αi−1] +

∑
[fi − fi−1]αi−1 =∥ +

∑
αi−1f

′(ti)∆i ≈
∫

fdα+

∫
αf ′

Theorem f : [a, b] → R, diff on (a, b), α BV. If f ∈ R(α), f ′α ∈ R, then Int by parts holds (
∫ a

b
fdα)

Stieltjes integral is roughly weighted Riemann int of derivative
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7 Sequences of Functions

For X,Y metric spaces, F(X,Y ) denote set of all X → Y .

For (fn) seq in F(X,Y ), say fn → f pointwise if lim fn(x) = f(x) ∀x

For (fn) seq in F(X,Y ), say fn → f uniformly (fn →→ f)if ∀ε > 0 ∃N s.t n ≥ N =⇒ d(fn(x), f(x)) <
ε ( ∀x ∈ X)

fn →→ f iff supx∈X d(fn(x), f(x)) → 0

Theorem (Cauchy Criteria): Let Y complete, (fn) ∈ F(X,Y ) s.t ∀ε > 0,∃N s.t n,m > N =⇒
sup d(fn, fm) < ε. Then ∃f ∈ F(X,Y ) s.t fn →→ f

Proof: For x fixed, fn(x) cauchy, lim exists, call it f(x). Fix ε > 0. Choose N s.t m,n > N =⇒
supx d(fn(x), fm(x)) < ε. Then d(fn(x), f(x)) = limm→∞ d(fn(x), fm(x)) ≤ ε (∀x) holds for n > Nε, inde-
pendent of x.

Theorem (Weierstrass M-test) For fn ∈ F(X,R), if ∀n∃Mn ∈ R s.t supx |fn| ≤ Mn with
∑

Mn < ∞. Then∑
fn converges uniformly.

Theorem Let E ⊆ X, fn, f : E → Y , p ∈ E′. If fn →→ f and limx→p fn(x) = Ln ∈ Y , then (Ln)
cauchy and if limLn exists, limLn = limx→p f(y). If fn : X → Y cont and unif conv, then f cont.

Proof:
d(Ln, Lm) ≤ d(Ln, fn(x)) + d(Lm, fm(x)) + sup d(fn, fm)

Choose N s.t 3rd term < ε. Choose x s.t 1/2 < ε (dependent on n,m), so cauchy. Define L = limLn

d(f(x), L) ≤ sup d(f, fn) + d(fn(x), Ln) + d(Ln, L)

Let X,Y metric spaces w/ Y cplt. Define C0(X,Y ) the set of bounded, cts X → Y w/ d0 = supx dY (f(x), g(x))

C0 is complete and
∫

is a continuous function C0([a, b]) → R

Let α BV, fn →→ f , fn ∈ R(α). f ∈ R(α),
∫
fndα →

∫
fdα

Proof: WLOG α increasing. Let ε > 0, take n s.t sup |fn − f | < ε. Take P s.t U − L < ε. sup f ≤
sup fn + ε (over each i, similar for a lower bound with inf).

[U − L](f, P, α) =
∑

(Mi −mi)(α− αi−1) ≤ (Mn
i −mn

i + 2ε)(α− αi−1) ≤ ε+ 2(α(b)− α(a))ε

Consider fn(x) = fn(a) +
∫ x

a
f ′
n → f(a) +

∫ x

a
f ′ = f(x) (f ′

n ∈ R, fn → f pointwise & f ′
n → g uniform, f ′

cont). So f ′(x) = g(x) if g continuous

Let (fn) diff, fn → f , f ′
n
→→ f ′, then ∀p, fn(x)−fn(p)

x−p
→→

f(x)−f(x)
x−p

Theorem Let (fn) diff, fn → f , f ′
n
→→ g. g = f ′

A modulus of continuity is W : [o,∞) → [0,∞] s.t W (0) = W (x)
x→0

= 0. f has a modulus of continuity

at p if ∃ωp (modulus) s.t d(x, p) < δ =⇒ d(f(x), f(p)) < W (δ). f is continuous at o iff f has a modulus of
continuity at p. Uniform continuous if modulus exists that is independent of p

A collection F ⊂ F(X,Y ) is equicontinuous if ∀p ∈ X ∃ωp s.t ∀f ∈ F , ωp (modulus) for f at p.
Equivalently, if ∀ε > 0 ∃δ > 0 s.t d(x, p) ≤ δ =⇒ d(f(x), f(p)) < ε.
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Sequence converges pointwise to a function if for every x ∈ D and ε > 0 ∃N > 0 s.t n > N =⇒
|fn(x)− f(x)| < ε

Let fn = cos(x/n). Fix x ∈ [0, π]. Since cos(z) is continuous, for any ε > 0∃δ > 0 s.t z ∈ (0, δ) =⇒
|cos(z)− 1| < ε. So equivalently ∃N s.t n > N =⇒ x/n ∈ (0, δ). Not a type of continuity, for seq.

x2 cont with ωp(δ) = 2|p|δ + δ2

Theorem If fn → f pointwise, (fn) equicont, then f cont

B2(0) ⊆ C0(R) is not compact. Take fn ∈ B2(0), fn(1/n) = 1, limit to 0. fn can’t have uniform
limit because fn → 0 not uniform, same with subsets. The problem is C0 is that convergence is not just
about size, but issues with continuity.

Uniform limit of fn being Lip does not imply that that fn has bounded lip constant, fn can have ar-
bitrarily, oscillating steps. But if fn →→ f in C0(X,Y ), then ∀p ∃ωp mod that holds at p for f, all fn

Proof: Fix p ∈ X. Let ωp,n, ωp be sharp mod at p for fn, f . Define ωp(r) = sup{ωp(r), ωp,n(r)}n∈N.
By construction, d(x, p) < δ =⇒ d(g(x), g(p)) < ωp(δ). WTS limωp(r) = 0. Fix ε > 0. Since
fn →→ f ∃N s.t n > N =⇒ d(fn(x), fn(p)) < d(f(x) + f(p) + ε. WLOG take ωp,n(r) ≤ ωp(p) + ε
(n > N). Everything less than n going to 0.

n−1 sin(n2x) →→ 0, f ′
n = ncos(n2x) not bounded. |n−1(n2(x+ δ)− n−1 sin(n2x)| ≤ min(nδ, 2n−2) ≤ 2δ

Theorem If F ⊆ C0 compact, then ∃M ∈ R+ s.t |f(x)| ≤ M , f ∈ F equicont

Theorem (Arzela-Ascoli) Let K compact, F ⊆ C0(K,R). If F bounded in C0 and F equicont, then
any seq in F has conv subseq in C0

Proof: Let (fn) seq in F . Let ωp unif mod for F . ∀n ∈ N ∃ finite collection pi, δi s.t ωpi
(δi) < n−1.

K ⊆ Bδi(pi). Take En set of all such pi. Since En finite, ∪En countable, ∃A ⊆ N infinite s.t limA f(p) conv
(p ∈ ∪En). WTS if fn conv unif along A. Fix ε > 0. E = En, s.t n−1 < ε, so ωp(δp) ≤ ε (p ∈ E). For x ∈ K,
∃p ∈ E s.t x ∈ Bδi(p). For m,n ∈ A,

|fn(x)− fm(x)| ≤ |fn(p) + fm(p)|+ |fm(x)− fm(p)|+ |fn(x)− fm(p)| ≤ 2ε+ |fn(p)− fm(p)|

Theorem For f : [a, b] → R cont, ∃(Pn) polynomials s.t. Pn
→→ f

An algebra A is a collection of functions s.t. for f, g ∈ A, f + g ∈ A, fg ∈ A, λf ∈ A.

A (function) collection F separates points if ∀x ̸= y, ∃f ∈ F s.t f(x) ̸= f(y)

Theorem (Stone-Weirstrauss) K compact, A ⊆ C0(K) algebra. If A separates points, it’s dense (C0(K))
Proof: First note from HW, ∃(Pn) →→ |x|. So taking .5f + g+.5Pn(f − g), we have min,max ∈ A. Take

g ∈ A and define g = (g − g(y))(g(x) − g(y))−1 ∈ A, g(x) = 1, g(b) = 0, f(x)g + f(y)(1 − g) ∈ A. Fix
x ∈ K, ε > 0. ∀y ∈ K, ∃gy s.t gy(x) = f(x),gy(y) = f(y), and cont. So ∃δy s.t |f − gy| < ε on Bδ(y).
K ⊆ ∪n

i=1Bδi(yi). ∃gx ∈ A, gx ∈ Bε(maxi gyi
). gx(x) ∈ Bε(f(x)). gx > f − 2ε. This is from above. From

below, similarly take {xi} s.t f + 2ε > mini gxi
. ∃g ∈ A, g ∈ Bε(mini gxi

), max g ∈ B3ε(f)

Peano’s Lemma: let F : R2 → R cont and consider y : [0, T ] → R, y(0) = a, y′(t) = F (t, y(t) on
[0, T ]. ∀a ∈ R ∃T > 0 s.t solution exists on the interval.

Idea: Since F cont, for t ≈ 0, y ≈ a, y′ ≈ F (0, a). Control y′ using Lipschitz. Create approx seq yn where
we expect limit to solve. Use compactness to show limit exists, and then show its the solution. Consider a
physics application: start at a travel at speed M for time T . Still in [0, T )×Bδ(a). Consider example where
f ′′ = −f , f(0) = 0, and f(0) = 1. Then we can write f ′ = g and then we have g′ = −f . This gives[

f
g

]
=

[
0 1
−1 0

] [
f ′

g′

]
=⇒
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Abbreviations
cmpt - compact
cont - continuous
conv - converge(s/nt/nce)
cplt - complete
cpt - compact
incr - increasing
LHS - left hand side
lp - limit point
nbhd - neighborhood
part - partition
unif - uniform(ly)
WLOG - without loss of generality
WTS - want to show
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Paul B. Math 531: Real Analysis I, HW1 April 23, 2022

Weekly Homework 1

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: ∃y ∈ R+ s.t y3 = 3

This will follow similarly to the proof in class of the supremum of {x ∈ Q|x2 < 2}. Here, we instead
define the set E = {x ∈ R+|x3 < 3}. We know supE exists1 by the (Dedekind) completeness of R.
We want to show that (supE)3 = 3.

(Case 1) Define arbitrary α > 1 s.t α3 < 3. We will show α isn’t an upper bound. Let δ = 3− α3,
implying δ ∈ (0, 1). Fix ϵ > 0 s.t ϵ < δ/(9α2) < δ/9. Note that for n ∈ N/{1} αn > α and ϵn < ϵ.
Then

(α+ ϵ)3 = α3 + ϵ3 + 3(αϵ2 + α2ϵ) < α3 + ϵ(1 + 6α2) < α3 + (7δ)/9 < α3 + δ = 3

Therefore, α+ ϵ is not an upper bound of E, so neither is α

(Case 2) Now define α ∈ (1, 2) s.t α3 > 3. We will show α is not the least upper bound of E. Let
δ = α3 − 3, so δ ∈ (0, 1). Fix ϵ > 0 s.t ϵ < δ/(6α2). Since ϵ3 > 0, −ϵ2 > −ϵ, and −α > −α2

(α− ϵ)3 = α3 + ϵ3 − 3(αϵ2 + α2ϵ) > α3 − 6ϵα2 > α3 − δ = 3

Therefore, α can’t be the least upper bound because α− ϵ is an upper bound

As mentioned, we know supE exists. Further, supE ∈ R+ from the cases above. Define y = supE.
In both cases, we defined α arbitrarily, meaning that we can make the general statement that for
u ∈ R, if u3 < 3 or u3 > 3, then u ̸= supE. By contraposition, y3 = (supE)3 = 3 ■.

2: S is a totally ordered set, and E ⊆ S. x is the greatest element of E =⇒ x = supE

We will show that if E has a greatest element, then it is the supremum

Since S is totally ordered and E ⊆ S, then E is totally ordered (if this wasn’t the case, there would
be an immediate contradiction for S being totally ordered). Let x be the greatest element of E.
Then x must be an upper bound because ∀ y ∈ E, y ≤ x. Let z < x. Then there exists at least one
element in E that is greater than z, so z is not an upper bound. Therefore, x = supE by definition.

1This fact will be implicitly used/assumed in later problems with analogous sets

1
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3: x ∈ R+ ∪ {0}. x ≤ ϵ for any ϵ > 0 =⇒ x = 0

We will perform a proof by contradiction.

Let x ∈ R+ ∪ {0} s.t x ≤ ϵ for any ϵ > 0. Assume x ̸= 0. Then x ∈ R+. Let ϵ = x/2. Then ϵ > 0
and ϵ < x, a clear violation of the initial conditions for x. Therefore, x = 0.

4: For non-empty A,B ⊆ R, let A+B ≡ {x+ y|x ∈ A, y ∈ B}. sup(A+B) = supA+ supB

We want to show (WTS) sup(A+B) ≤ supA+ supB and sup(A+B) ≥ supA+ supB

Let A,B ⊆ R be nonempty and x ∈ (A+B). Then x ≤ sup(A+B). For some a ∈ A and b ∈ B, we
can write a+ b = x (addition axiom for fields). Therefore a ≤ sup(A+B)− b. Since x is arbitrary,
a can be any element of A, meaning sup(A+B)− b (the right hand side - RHS) is an upper bound
for the set A. So the RHS is also less than or equal to the least upper bound of A and as a result

supA ≤ sup(A+B)− b =⇒ b ≤ sup(A+B)− supA

By a similar argument, the RHS of the second inequality above is an upper bound for the set B and
is thereby less than or equal to the least upper bound of B, leading to supA+ supB ≤ sup(A+B)

For a ∈ A, a ≤ supA. Also, for b ∈ B, b ≤ supB. Combining the two inequalities,
a+ b ≤ supA+ supB. This inequality must hold for any choice of a ∈ A and b ∈ B, meaning the
RHS is an upper bound for the set A+B. Therefore, the RHS is less than or equal to the least
upper bound, and sup(A+B) ≤ supA+ supB.

We have now proven sup(A+B) ≤ supA+ supB and sup(A+B) ≥ supA+ supB. In order for
both of these to hold, sup(A+B) = supA+ supB.

5: If E is a non-empty subset of an ordered set s.t α andβ are (respectively)
lower/upper bounds of E, then α ≤ β

From #2, E is an ordered set. Since E is non-empty, consider any element x ∈ E. By definition of
lower/upper bounds and the transitivity property inherent to ordered sets,

α ≤ x and x ≤ β =⇒ α ≤ β

6: A ⊆ R be non-empty and bounded below with −A = {−x|x ∈ A} =⇒ inf A = − sup(−A)

Since A is bounded below, inf A ∈ R. Let α = inf A. We WTS α = − sup(−A).

By the propositions of ordered fields in Rudin, for any x ∈ A

α ≤ x =⇒ −x ≤ −α

since α is a lower bound of A. From the definition of the set −A, this means −α is an upper bound
of −A. We will show that it is the least upper bound (sup(−A)) using a proof by contradiction.

2
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Assume −α is not the least upper bound of −A (−α ̸= sup(−A)). Then there exists
y ∈ R s.t y < −α and y is an upper bound of −A. Then for any a ∈ −A

a ≤ y < −α =⇒ α < −y ≤ −a

By definition, −a ∈ A. Because there exists a lower bound greater than α, α ̸= inf A, a
contradiction. Thus, −α = sup(−A) so inf A = − sup(−A).

7: No order can be defined in the complex field that turns it into an ordered field

We will perform a proof by contradiction.

Assume there is an order, <, such that C is an ordered field. Consider first that 0, i ∈ C. Trivially,
i ̸= 0. For instance, (Rudin 1.16a) i2 = −1 ̸= 0 = 02. Further, i2 < 0, which yields a contradiction
(from contraposition) of Rudin’s proposition 1.18d for ordered fields (x ∈ C, x ̸= 0 =⇒ x2 > 0).
Therefore, no order can be defined in the complex field that turns it into an ordered field

8: Suppose z = a+ bi, w = c+ di. Define z < w if either a < c or both a = c and b < d.
This turns the set of all complex numbers into an ordered set. Does this ordered set
have the least-upper-bound property?

First, a prelude on notation: in order to deal with all the cases in this problem, one essentially has
to let b = d and d = b in some instances, which is counterintuitive. This is because the problem is
supposed to be set up such that w and z (and their componets) are both general and specific objects.
Unfortunately, the only way to remedy this is to introduce more notation, which is obviously more
cumbersome. My personal confusion outweighs the distaste for more objects, so before we begin the
proof we will define more notation and essentially reformulate the problem.

Define the strictly general objects x, y ∈ C by

x = p1 + p2i

y = q1 + p2i

Let x > y if (T1) p1 > q1 or (T2) both p1 = q1 and p2 > q2. Now we can define the applied but
arbitrary (potential values depend on the case or sub-case) objects w, z ∈ C by

w = c+ di

z = a+ bi

This is an equivalent setup to Rudin #9, simply with some additional notation partitioning. Also,
note that implicitly we know p1, p2, q1, q2, c, d, a, b ∈ R. This is because any complex number can be
written as the sum of a real number (constant) and i multiplied by a real number (coefficient).

We will complete the proof by showing that this setup leads to the two tenets of an ordered set for C.

First, we WTS that z = w or z < w or w < z. Since R is an ordered set, a = c or a < c or c < a. If
a < c then z < w by T1 (p1 = c, q1 = a). If c < a then w < z also by T1 (p1 = a, q1 = c). If c = a
and d = b then z = w by a simple substitution. If c = a and b < d then z < w by T2
(p2 = d, q2 = b). If c = a and d < b then w < z also by T2 (p2 = b, q2 = d). We have assessed all
possibilities of w and z, and in all cases z = w or z < w or w < z.

3
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Second, if an additional complex number k = m+ ni is defined, we WTS if z < k and k < w then
z < w. If z < k then by T1 and T2 either a < m or both a = m and b < n. Similarly, if k < w
then either m < c or both m = c and n < d. If we assume both conditional statements, this results
in the following sub-cases. The transitivity endowed by R will be used repeatedly

(Case 1) Assume a < m,m < c. a < m < c, so z < w by T1 (p1 = c, q1 = a)

(Case 2) Assume a < m,m = c, n < d. a < m = c, so z < w by T1 (p1 = c, q1 = a)

(Case 3) Assume a = m, b < n,m < c. m = a < c, so z < w by T1 (p1 = c, q1 = a)

(Case 4) Assume a = m, b < n,m = c, n < d. a = c and b < n < d, so z < w by T2 (p2 = d, q1 = b)

All cases of z, w, k have been assessed, so z < k, k < w =⇒ z < w

Therefore, since this setup establishes both desired properties of the definition, it turns C into an
ordered set.

We will show that the setup does not uphold the least upper bound property using a proof by
contradiction.

Assume C has the least upper bound property. Define E ⊆ C by E = {0 + ri|r ∈ R}. This set is
bounded above by any element in R+ by T1 (q1 = 0 < p1 if p1 is made positive), in addition to
infinitely many complex numbers. So by the least upper bound property, supE exists. For a, b ∈ R
let α = a+ bi be the supremum (α ∈ C since E is bounded above). We know if a < 0, then α is not
an upper bound. So this results in two possibilities: a > 0 or a = 0.

If a > 0, let c = a/2 and β = c+ bi. Then β < α by T1 (p1 = a, q1 = c) and β is an upper
bound on E, meaning α isn’t the least upper bound (contradiction).

If a = 0, then let d = 2b and β = di. Then β ∈ E and α < β by T2 (p2 = d, q2 = b), meaning α
isn’t an upper bound (contradiction).
These are the only two possibilities, meaning C cannot have the least upper bound property.
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Weekly Homework 2

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: Show whether the following are open and/or closed (w.r.t R and d(x, y) = |x− y|)

(a) Q is neither. Q is not open because every neighborhood of a rational contains a real number.
Formally, for any ϵ > 0 and x ∈ Q by the Archemdian property there exists n ∈ N
s.t x

√
2/n ∈ Bϵ(x) (open ball1). Q is not closed because Qc is not open by a similar argument

(also see Rudin 1.20b).

(b) A = (0, 1] is neither.A is not closed because 1 ∈ A but for any ϵ > 0, Bϵ(1) ∩Ac ̸= ∅ (e.g.
1 + .5ϵ ∈ Bϵ(1), A

c), so Bϵ(1) is not a subset of A. A is not closed because 0 is a boundary point
(since for any x ∈ (0, 1), 0 + x ∈ A and 0− x ∈ Ac) but not in A (so ∂A not subset of A).

(c) ∅ is clopen. ∅ is open since ∅◦ = ∅ (the set of all x ∈ R s.t Bϵ(x) ⊆ ∅ for some ϵ > 0 is empty).
Similarly, ∅ is closed since ∅ = ∅ (the set of all x ∈ R s.t ∀r > 0, Br(x) ∩ E ̸= ∅ is empty).

(d) {0} is closed. Similar to part b, {0} is not open because for any ϵ > 0, Bϵ(0) ∩ R\{0} ≠ ∅ (e.g.
0 + .5ϵ ∈ Bϵ(0), {0}c), so Bϵ(0) is not a subset of {0}. {0} is closed because it’s compliment is open
because from part c, R is open as the compliment to ∅, so {0}c must be open ({x ∈ (−∞,∞)} open
=⇒ {x ∈ (−∞, 0) ∪ (0,∞)} open otherwise there’s an immediate contradiction).

(e) A = {1, .5, 1/3, . . . } is neither. A is not open because, for instance, any open ball around 1 will
not be a subset of A because it contains infinitely many real numbers that are either irrational or
greater .5, the next smallest element (e.g. 1/

√
2 ∈ B.5(1) but is not in A). A is not closed because

{0} is a limit point (for any r > 0, ∃n ∈ N s.t 1/n ∈ Br(0), A) but not in the set (direct violation
of Rudin definition).

(f) A = {0, 1, .5, 1/3, . . . } is closed. A is not open because the reasoning from part e) still holds. A
is closed because it now contains 0, and ∂A = {0, 1} ⊆ A. It should be immediate that this is ∂A,
but just in case here’s a formal proof. ∂A = {0, 1} because for any a < 0 or a > 1, there there’s a
ball centered at a that doesn’t intersect A (e.g. consider a ball of radius < |x| for a < 0),for
b ∈ (0, 1) there’s a ball centered at b that doesn’t intersect Ac, 0 is a boundary point because by the
Archemedian property for ϵ < 0 there exists n ∈ N s.t −ϵ < −1/n < 0 < 1/n < ϵ, and 1 is a
boundary point because it will be in every open ball (so will intersect A) and by the Archemedian
property for ϵ < 0 there exists n ∈ N s.t 1 < 1 + 1/n < ϵ (so will intersect Ac).

1for this instance and for now on, Br(x) denotes an open ball of length r centered at x

1
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2: Classify open and closed sets w.r.t R2 and the Paris metric (d(x, y) = ||x||+ ||y|| and d(x, x) = 0)

For any point x 6= 0, the ball of radius ||x||/2 will contain x itself and nothing else. Thus x is an
open ball.

For open balls centered the origin, the ball Br(0) of radius r in the Paris metric is equal to the same
ball with respect to the usual metric.

A set is open if and only if it is a union of open balls. Therefore any set which does not contain the
origin is open, and any set which contains the origin is open if and only if it also contains some open
ball (with respect to the usual metric) around the origin.

A set is closed if and only if its complement is closed. Therefore any set which contains the origin is
closed, and any set E which does not contain the origin is closed if and only if inf{||x|||x ∈ E} > 0

3: For metric space (X, d), x ∈ X, and A ⊆ X, define d(x,A) = inf{d(x, y)|y ∈ A}. For A,B ⊆ X
define d(A,B) = inf{d(y,B)|y ∈ A} Show or disprove that..

(a) for E ⊆ X, x ∈ E iff d(x,E)
x ∈ E =⇒ x ∈ E and/or x ∈ E′. Clearly, x ∈ E =⇒ d(x,E) = 0. So now consider the x ∈ E′

case. By rudin 2.20, any neighborhood of a limit point will contain infinitely many points of E, and
if there was a positive distance between x andE this could not be the case (immediate contradiction
between having infinite points for every neighborhood; you could take a ball with radius less than
the distance). To show the other direction, proof by contradiction: assume d(x,E) = 0 and x /∈ E,
meaning x ∈ E

c which is open, so there exists Bϵ(x) ⊆ E
c. Let y ∈ E. By the construction of our

ball, there must be positive distance between x and y since E
c won’t contain any points of E, so

d(x, y) ≥ 0. Since y is arbitrary, this is a contradiction of the assumption that d(x,E) = 0.

(b) closed A,B ⊆ X are disjoint iff d(A,B) > 0
Counter example: A = {n|n ∈ N} and B = {n+ 2−n|n ∈ N}. A and B are closed by its complement
being a countable union and are disjoint, but the the distance (2−n) limits to 0.

4: For metric space (X, d) and disjoint closed sets E,F ⊆ X, there exist open sets
U, V ⊆ X s.t E ⊆ U,F ⊆ V, andU ∩ V = ∅

We will show you can create open balls around both sets that do not intersect (using #3 definitions).

Since E andF are closed and disjoint, ∀x ∈ E and y ∈ F , d(x, y) > 0, implying for each x and y
there exists infinitely many balls (e.g. if B1(x) works, so does B.9(x), B99(x), and so on) that do
not intersect the other set (i.e. infinitely many Br(x) ∩ F,Bq(x) ∩ E = ∅). Intuitively, this means
we can create two collections of balls that do not intersect but contain the relevant sets.

Formalizing this idea, for each x ∈ E, define ϵx > 0 s.t Bϵx(x) ∩ F = ∅. Now we have collection of
ϵx, and call the infimum of this collection ϵ and define U = ∪x∈EB.5ϵ(x). Clearly, E ⊆ U because
any x ∈ E will be in one of the balls. Similarly, for each y ∈ F , define δy > 0 s.t Bδy(y) ∩ E = ∅
and all b > δy lead to Bb(y) ∩ E ̸= ∅. Let δ be the infimum of the collection of all δy and
V = ∪y∈FB.5δ(y), so F ⊆ V . E andF are open because the union of open balls are open.

Now we WTS that U ∩ V = ∅. It should be clear from the definitions this is the case, but we will

2
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rigorously show it. Define e ∈ ∂E and f ∈ ∂f such that if e ̸= e′ ∈ ∂E and/or f ̸= f ′ ∈ ∂F then
d(e, f) ≤ d(e′, f ′). Note 0 < d(∪x∈EBϵ(x), F ), d(∪y∈FB.5δ(y), E) by construction (the balls are
open and E,F are closed). Therefore, when we cut the radii of the balls in half (as U andV do), the
distance is less than half of the shortest distance between E andF , or more formally
d(U,F ), d(V,E) < .5d(e, f). Because U and F do not extend to the midpoint of the shortest
distance between E and F (or beyond), they cannot intersect, so U ∩ V = ∅.

5: If k ≥ 3, x&y ∈ Rk, ||x− y|| = d > 0, and r > 0, prove that..

First, consider this useful conceptualization to aid for all 3 parts. Consider two circles with radius r,
with centers connected by a line segment with length d. If 2r > d, this means the circles are not
tangent to each other because otherwise the centers could be connected by a segment equivalent to
the sum of their radii (i.e. 2r). Moreover, this also means there is space between the circles because
otherwise the line segment would be shorter than the sum of the radii. In this problem, r is not
(necessarily) a radius, but thinking of it as one is helpful for why each of these cases ends up the
way they do. Each case will start in 2-d space (i.e. with circles) and then will build up a
generalization in a quasi-inductive fashion.

(a) if 2r > d, there are infinitely many z ∈ Rk s.t ||z − x|| = ||z − y|| = r
First, we will offer an intuitive explanation, and then try to formalize it a bit by finding a general
form for z.

Consider the conceptualization above. If k = 3, we can consider x and y spheres. Now consider
another sphere z. If z intersects x and y, the intersection will be a circle, and more precisely will be
distance r between both x and y. Since mutual the distance between z (2r) is greater than the
distance between x and y, this means there are several spheres z which could satisfy this property,
because for any z ∈ R3 there are an arbitrary number of linear combinations that will result in an
object equidistant from x and y. For instance, consider r = 4 > .5d. Then by extension, there can be
a move to a greater value of r by modifying z, and as long as the change in "coordinates" is directly
proportional to the previous ratios of (x1, y1, . . . ), we can continue creating new z further away that
will obviously be greater than twice the distance between x and y. If we consider k = 4, this will be
valid by what we have shown for spheres, and so on for k ≥ 3.

For a formal proof, let z = .5x+ .5y + a, where a · a = r2 − (.5d)2. Note, we can make r arbitrarily
large in the 2r > d case, so by construction there are several such zs that work. Then

||z−x||2 = ||.5(y−x)+a||2 = .25(y−x) · (y−x)+a · (y−x)+a ·a = .25d2+2a · (y−x)− .25d2+ r2

since x · x = ||x||2 and ||x− y|| = d. Now we are left with ||z − x||2 = r2 + 2a · (y− x). It’s also easy
to show that ||z − y||2 is the same thing. These can both simplified to simply r2 if a · (y− x) = 0, in
which case we are done because || · || ≥ 0, so squaring terms doesn’t distort anything. From linear
algebra, we know there are still an arbitrary number of combinations such that this works (along
with the equation for a · a). If you assume a solution exists, then for instance at k = 3 and t > 1 you
have

a1(x1 − y1)− a2(x2 − y2)− a3(x3 − y3) =⇒ ta1(x1 − y1)− ta2(x2 − y2)− ta3(x3 − y3

Remembering the original construction of z, this means infinitely many z satisfy
||z − x|| = ||z − y|| = r.

3
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(b) if 2r = d, there is only one z ∈ Rk s.t a) holds
Intuitively, we can again consider the conceptualization at the top. More formally, we know that z
must be the exact midpoint between x and y otherwise the solution (2r) will not be equal to d. This
follows explicitly by the triangle inequality

d = ||x− y|| ≤ ||x− z||+ ||z − y||

If ||z − x|| = ||z − y|| = r and the above holds with equality, by standard properties of real numbers
there is only one such r where equality holds

(c) if 2r < d, there is no z ∈ Rk s.t a) holds
Consider the triangle inequality above again. If ||z − x|| = ||z − y|| = r and 2r < d, then

||x− y|| = d ≥ 2r = ||x− z||+ ||z − y||

a contradiction for the triangle inequality which we know holds for norms. So no such z exists

(d) For k = 2, we know from the conceptualization at the top only 2 such z is possible that a) holds.
For the rest, we get the same result. If k = 1, part a) doesn’t hold for any z, but the rest are the
same (one for b) and none for c) ).

6: E′ is closed.E andE have the same limit points, and E andE′..

(a) We WTS E′ is closed because it’s equal to its closure E′. By definition,x ∈ E′ =⇒ x ∈ E′, so
we will prove the other direction by contradiction: assume ∃x ∈ E′ s.t x /∈ E′. This x must satisfy
∀r > 0, Br(x) ∩ E′ ̸= ∅. So for each Br(x), ∃y ∈ E′, Br(x). By Rudin 2.20, any neighborhood of y
contains infinitely many points of E (i.e many z ∈ E arbitrarily close to y s.t z ̸= x). Since there’s
a y for each r, this implies for every ϵ > 0 there is also some z ∈ Bϵ(x) s.t z ̸= x, z ∈ E. So by
definition, x is a limit point of E, contradiction. So x ∈ E′ ⇐⇒ x ∈ E′, meaning E′ = E′.

(b) We WTS E′ = E
′. We will prove this by showing the general result that A′ ∪B′ = (A ∪B)′.

First, note that A ⊆ B =⇒ A′ ⊆ B′. This is because if x ∈ A ⊆ B, then every neighborhood of x
contains a point of A\{x} and thereby B\{x}, so x ∈ B′. Next, note that this implies
A′ ∪B′ ⊆ (A ∪B)′ because it results in A′ ⊆ (A ∪B)′ andB′ ⊆ (A ∪B)′. Finally, we will show
(A ∪B)′ ⊆ A′ ∪B′. Let x /∈ A′ ∪B′. Then there exists neighborhoods U and V of x s.t
U ∩ (A\{x}), V ∩ (B\{x}) = ∅. So M = U ∩ V is a neighborhood of x s.t M ∩

(
(A ∪B)\{x}

)
= ∅.

Therefore, x /∈ (A ∪B)′, implying (A ∪B)′ ⊆ A′ ∪B′. Combining results, A′ ∪B′ = (A ∪B)′.

Since E = E ∪ E′, E′
= E′ ∪ (E′)′. However, since E′ is closed from a), we know (E′)′ ⊆ E′.

Therefore, E′
= E′

(c) As alluded to in b), E′ and E do not always have the same limit points. In fact, from a) we know
that the limit points of E′ are a subset of E′, or (E′)′ ⊆ E′. For example, if E′ = {1}, (E′)′ = ∅.
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7: For i ∈ N, let {Ai} be subsets of a metric space

(a) (n = 1, 2, . . . ) Bn ∪n
i=1 Ai =⇒ Bn = ∪n

i=1Ai

We will prove this by showing the general result that A ∪B = A ∪B

First note that A ⊆ B =⇒ A ⊆ B because it also implies that A ⊆ B, and from standard topology
texts the closure of A can be thought of as the intersection of all closed sets containing it, so since B
is closed A ⊆ B. This means A ⊆ A ∪B andB ⊆ A ∪B, so A ∪B ⊆ A ∪B. And in a similar
argument leading to the first result, since A∪B ⊆ A∪B, where the RHS (right hand side) is closed,
then A ∪B ⊆ A ∪B. Therefore, combining results yields equality.

Now if we consider adding A′
i as a union to each Ai, this will be equivalent to the union of closures

by the result above. Further, if we consider B = B ∪B′, if we assume it does not contain and
x ∈ Ai (for some i) we will immediately arrive at a contradiction. Therefore, B′ = ∪iA

′, and so
therefore Bn = ∪n

i=1Ai

(b) B = ∪∞
i=1Ai =⇒ ∪∞

i=1Ai ⊂ B
This follows directly from A ⊆ B =⇒ A ⊆ B above. We have

(∀i) Ai ⊂ B = ∪∞
i=1Ai =⇒ (∀i) Āi ⊂ B̄ =⇒ ∪∞

i=1Āi ⊂ B̄

(c) Example

(0, 1) = ∪i∈N(1/n, 1) =⇒ (0, 1) = ∪i∈N(1/n, 1) ⊂ [0, 1] = (0, 1)

8: x ∈ E ⊆ R2 open =⇒ x ∈ E′? If E ⊆ R2 closed?

(a) Since E is open, let x ∈ E,E◦. Thus, for ϵ > 0 we have Bϵ(x) ⊆ E. However, because E is open,
we know that ∃y ∈ Bϵ(x) s.t y ̸= x. The intuition on this comes from some of the previous
examples; if x were singleton or discrete it wouldn’t be open, therefore there must be an
accumulation of points. Therefore, x is a limit point by definition.

(b)
This does not hold for closed sets. There are a myriad of counter examples from the fact that finite
sets in R2 are closed from Rudin, namely a set with one element {(0, 1)} will not be a limit point
because there is no other element of the set, so there does not exist y ̸= x but y ∈ E for any
neighborhood of x = {(0, 1)}.

9: For a set E..

(a) E◦ is open
Let x ∈ E◦. Then for some ϵ > 0, Bϵ(x) ⊆ E. This implies for infinitely many y ∈ Bϵ(x), and (for
each) there exists r ∈ (0, ϵ) s.t Br(y) ⊆ E. This means each y ∈ Bϵ(x) is an interior point, so by
definition Bϵ(x) ⊆ E◦. So to recap: ∀x ∈ E◦ ∃ ϵ > 0 s.t Bϵ(x) ⊆ E◦

5
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(c) G ⊂ E open =⇒ G ⊂ E◦

If G ⊂ E is open, then x ∈ G =⇒ x ∈ G◦. This means that x ∈ E◦ also because given ϵ > 0,
Bϵ(x) ⊆ G ⊂ E. To clarify: we have shown x ∈ G =⇒ x ∈ G◦ =⇒ x ∈ E◦ =⇒ G = G◦ ⊂ E◦

(e) E◦ = E
◦?

No. Consider E = (−1, 1)\{0}, which we have implicitly shown is open in previous problems (and in
class). Therefore, E◦ = E. E = [−1, 1], as it is clearly the smallest closed set containing E (Rudin).
The interior of this set is the closure less its boundary, so E

◦
= (−1, 1) ̸= E◦

(f) E = E◦?
No. From #1, consider E = {0}, which we know is closed so E = {0}. However, E◦ = ∅ because
each ball around 0 will obviously contain something that is not 0, so it can’t be a subset of 0.
Because the empty set is closed, its closure is itself, so E◦ = ∅ ≠ E.

10: For x, y ∈ R, are the following metrics?

(a) d1(x, y) = (x− y)2

No, this isn’t a metric because it doesn’t preserve the triangle inequality. Consider that
d(3, 1) = 4 > d(3, 2) + d(2, 1) = 2

(b) d2(x, y) =
√
|x− y|

Yes. If x ̸= y, by the addition axioms x− y ̸= 0 =⇒ |x− y| ≠ 0 =⇒
√

|x− y| ≠ 0. If x = y, by
the same logic d2(x, y) = 0. That shows both directions of positive definite. |x− y| = |y − x|, so the
square-roots are also the same, showing symmetry. The triangle inequality holds because we already
know that it holds for the absolute value and the absolute value is ≥ 0, in which case square-root
preserves order, meaning

|x− y| ≤ |x− z|+ |y − z| =⇒
√

|x− y| ≤
√

|x− z|+
√
|y − z|

(c) d3(x, y) = |x2 − y2|

No, this doesn’t preserve positive definite, for example d3(−1, 1) = 0

(d) d4(x, y) = |x− 2y|
No, this doesn’t preserve positive definite, for example d3(1, .5) = 0
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Weekly Homework 3

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: If (nonempty) E ⊆ X closed and K ⊆ X compact, E,K disjoint ⇐⇒ d(E,K) > 0 (HW# 2 def)

( ⇐= ) Proof by contradiction: assume E ∩K ̸= ∅ and let x ∈ E ∩K. From the definition of the
greatest lower bound, d(E,K) > 0 =⇒ ∀e′ ∈ E and k′ ∈ E d(e′, k′) > 0, but by definition
x ∈ E,K and if we let e′ = x and k′ = x then d(e′, k′) = d(x, x) = 0, contradiction.

( =⇒ ) Proof by contradiction: assume d(E,K) = 0. Because E,K are disjoint, this intuitively
means E contains a subset of elements that are arbitrarily close to K, and likewise K contains a
subset arbitrarily close to E. More formally, for any ϵ > 0, define the sets

Eϵ = {e ∈ E|d(e,K) < ϵ} and Kϵ = {k ∈ K|d(E, k) < ϵ}

By construction, Eϵ,Kϵ ̸= ∅ for any ϵ (otherwise the infimum of the distance between E andK
would not be 0 as assumed). Now consider an ordered, natural numbers indexing of both sets.
Impose that these representations are both infinite (elements can repeat if necessary). Explicitly,

Eϵ,n = {ei ∈ Eϵ|d(ei,K) ≥ d(ei+1,K)}i∈N and Kϵ,n = {ki ∈ Kϵ|i ∈ N : d(E, ki) ≥ d(E, ki+1)}i∈N

Therefore, because ϵ is arbitrary, for ei ∈ Eϵ,n and ki ∈ Kϵ,n, we must have lim
i→∞

d(ei, ki) = 0.
Because K is compact, any infinite subset must have at least one limit point in K. So let
α ∈ K

′
.5ϵ,n,K. Next, we will prove the result that ∃j ∈ N s.t ej ∈ Bϵ(α), which will show α ∈ E′.

α ∈ K
′
.5ϵ,n =⇒ B.5ϵ(α) contains infinitely many elements of K.5ϵ,n (Rudin 2.20). More precisely,

there any infinitely many ki ∈ B.5ϵ(α),K.5ϵ,n. Since lim
i→∞

d(ei, ki) = 0, for any ϵ > 0 ∃ j ∈ N s.t

d(ej , kj) < .5ϵ. Because we know there exists such a kj ∈ B.5ϵ(α),K.5ϵ,n, this implies ej ∈ Bϵ(α) by
the triangle inequality (d(α, ej) ≤ d(α, kj) + d(ej , kj) ≤ ϵ). So α ∈ E′ by definition (ϵ is arbitrary,
α ̸= ej otherwise contradiction is immediate). α ∈ E since closed sets contain their limit points.
However, α ∈ K also, so E ∩K ̸= ∅, contradiction.

1
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2: Let (X, d) be limit point compact: for every infinite E ⊆ X, E′ ̸= ∅

(a) For any δ > 0 ∃{xi}Ni=1(N ∈ N) s.t X ⊆ ∪i∈[1,N ]Bδ(xi)
Proof by contradiction: assume X is not totally bounded. Then from the definition given in the
probelm, ∃ϵ > 0 s.t x ∈ X =⇒ X ̸⊆ Bδ(x). By the definition of a subset, this implies
∃y ∈ X s.t y /∈ Bϵ(x). Bϵ(x) ∪Bϵ(y) could be made into its own ball for some z ∈ X that does not
contain some other element in the set. This process could continue infinitely, making a union and
reforming a ball that does not include some element in X since it’s not totally bounded. Let δ > 0
be the minimum of all the radii that would be formed in the process. We also can define a collection
through iteration A = {xi ∈ X|xi+1 /∈ ∪i

j=1Bδ(xj)}i∈N. Then xi, xj ∈ A(i ̸= j) =⇒ d(xi, xj) ≥ δ.
A ⊆ X (and is infinite), so by definition of limit point compact there exists α ∈ A′, X. By the
definition of limit point, ∃xi, xj ∈ B.5δ(α) s.t xi ̸= xj since a ball around α contains infinitely many
elements of A. By the triangle inequality, d(xi, xj) < δ, contradiction.

(b) {Fn}n∈N nested sequence of nonempty closed subsets of X =⇒ ∩n∈NFn nonempty
Let I = {0} ∪ N. Construct a sequence A = {fn}n∈I s.t fn ∈ Fn and fi /∈ Fn(i < n), which is
possible by the definition of nested. So informally, this is a set consisting of one point from each Fn.
Clearly A is an infinite subset of X, so by the definition of limit point compact ∃α ∈ A′, X.
Additionally, closed sets contain their limit points, and F0 is closed with fn ∈ E(n ∈ I) =⇒ fn ∈ A,
so A ⊆ F0 and thus F0 must contain points of A′. Trivially note ∪i∈NFi ⊆ F0 by nestedness. Again
by Rudin 2.20, Bϵ(α) contains infinitely many elements of A (ϵ > 0). This means that we can take
finitely many points out of A and this will still hold. So now we will exploit this fact to show that
α ∈ ∪∞

n=0Fn using an inductive argument. By construction, A\{f0} ⊆ F1. F1 is closed, meaning it
must contain its limit points. α will still be a limit point for A\{f0} because the arbitrary ball
alluded to earlier contains infinitely many points of A\{f0}, meaning it will obviously satisfy the
definition1 of a limit point for this new set. This means we can apply the same argument that
yielded α ∈ F0 to show that α ∈ F1. We can see from here we will arrive at a classic inductive result:

A\{f0, f1, . . . , f)n} ⊆ Fn+1

and α ∈ Fn+1 since the same arguments we used for F1 apply. Therefore, we can generalize this
result infinitely, giving us α ∈ ∪∞

n=0Fn, obviously meaning that this infinite intersection is nonempty.

(c) (X, d) is compact
From a), for δ = 1, ∃{xi}Ni=1 ∈ X s.t X ⊆ ∪i∈[1,N ]B1(xi) (with N ∈ N). Therefore, we can
construct {Gα} an open cover for X. Now, we will consider a proof by contradiction based on this
established premise. This will follow a similar strategy to the proof for proving [a, b] is compact.

Assume X is not compact. Then ∃A = B1(xn) which cannot be covered with a finite set. If we
partition A into closed balls, then one of these balls must also not have some possible finite cover
(by our non-compactness assumption, otherwise contradiction). Formally, consider a ball
partitioning using radii d = (1, xn)/2. Select the ball that is "finitely uncoverable". Consider this
first partitioning process yielding A1, and the next A2, and so on. Then we have An ⊆ An+1 and
from class An has radius 2−nd(xn, 1). Because this setup fulfils the assumptions/conditions needed
for the result in b), we can say that ∃β ∈ ∩i∈NAi s.t β ∈ A′ (and is not ∅). Referencing the open
cover developed at the beginning, this implies ∃a s.t β ∈ Ga. By the openness of Ga,
∃ϵ > 0 s.t Bϵ(β) ⊆ Ga. Because β is a limit point of A, by the radii properties above (also from the

1 s.t x ∈ E′ iff ∀r > 0, ∃ y ∈ Br(x) where y ̸= x, y ∈ E

2
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aforementioned proof in class) An ⊂ B21−nd(xn,1)(β). Because we definite An such that the radii are
shrinking towards 0, by the Archimedian property ∃m ∈ N such that the radius of Am is less than ϵ.
Let the radius of Am be r. Then Am ⊆ Bϵ(β) ⊆ Ga. However, Em is supposed to not have a finite
cover by construction, contradiction.

3: For X infinite and p, q ∈ X let d(p, q) = 0 if p = q and 0 otherwise.

(a) Prove this is a metric
d(p, q) = 0 =⇒ p = q by the construction of the metric. The implied by direction follows by simple
contraposition: d(p, q) ̸= 0 =⇒ d(p, q) = 1 =⇒ p ̸= q. Therefore we have proven positive
definiteness.

If p = q, then d(p, q) = d(p, p) = d(q, p) = 0. If p ̸= q, then d(p, q) = d(q, p) = 1. Therefore we have
shown symmetry.

For p, q, s ∈ X, d(p, s) + d(q, s) ≥ 0. If they all are equal, 0 = 0. If p = q ̸= s, then
0 = d(p, q) ≤ d(p, s) + d(p, s). If s = p ̸= q, then d(p, q) = 1 = d(p, s) + d(q, s). If s ̸= p ̸= q, then
d(p, q) = 1 < 2 = d(p, s) + d(q, s). Therefore, we have shown the triangle inequality in all cases.

Therefore, d is a metric.

(b) Which subsets are open, closed, and compact
Open sets: singleton sets are open because a ball with radius less than 1 will be a subset of the
singleton. Singleton sets are their closures, so their complement is open, meaning X\{x} is also
open. Balls with radius greater than one are also open. This also means that the entire space X is
open. The empty set will still naturally subset itself so its open.

Closed sets: As alluded to above, singleton sets are closed. However, since they are also open, by
the compliment property X\{x} is also closed. ∅ is its own closure, so its also closed. The entire
space is also closed since its compliment (∅) is open.

Compact sets: Finite subsets of X are compact. This will include the singletons, for example.

4: K = {1/n|n ∈ N} ∪ {0} is compact

Let {Gα}α∈A be an open cover of K with G = ∪α∈AGα. We will prove that there must be a finite
subcover {Gβ}β∈B (where B ⊆ A is finite).

First, we will prove that ∃a ∈ A s.t for some N ∈ N, [0, 1/N ] ⊆ Ga. {0} must be in some Ga,
otherwise K ̸⊆ G and thus {Gα}α∈A won’t be an open cover. So ∃a ∈ A s.t {0} ∈ Ga. Because Ga

is open, there must exist r > 0 s.t Br(0) ⊆ Ga by the definition of an open set. So Ga ∩K\{0} ≠ ∅
and ∃x > 0 s.t x ∈ Br(0). From a result from class, there exists N ∈ N s.t .5x ∈ (1/N,N). So
{1/N} ∈ Br(0) and thus [0, 1/N ] ⊆ Br(0) ⊆ Ga. By a similar line of argumentation, ∃b ∈ A s.t for
some M ∈ N, [1/M, 1] ⊆ Gb. WLOG, let M ≤ N .

In constructing our open cover, so far we have Ga andGb. Now we need to find an finite indexing
that will include (1/N, 1/M). Note that there are finitely many natural numbers between M andN .
So now consider the set Cn = {n ∈ N|n ∈ (M,N)}. For each i ∈ Cn, there exists at least one c ∈ A
s.t 1/i ∈ Gc. WLOG, for each i let ci be the smallest value that this holds, and thus we can form

the set C = {ci}N−1
i=M+1. Now, the set B = {a} ∪ {b} ∪ C is finite, B ⊆ A, and {Gβ}β∈B coveres K.

Therefore, we can develop a finite subcover, {Gβ}β∈B , for every open cover of K, so K is compact.

3
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5: Give an open cover of (0, 1) with no finite subcover

Let K = (0, 1). Let Gn = (1/n, 1). Then ∪∞
i=1Gi = (0, 1), so its an open cover for K (open covers

don’t need to be a proper subset). Let B ⊆ N be finite. Then
∃N s.t n ≤ N and 1/N ≤ 1/n ∀n ∈ B =⇒ (1/N, 1) ⊂ (1/n, 1). This implies that
∪β∈BGβ = (1/N, 1). So any potential finite subcover you could construct will always have
uncovered space between 0 and some 1/N .

6: If A,B are disjoint closed sets in a metric space X

(a) prove they are separated
Since A andB are closed, A = A andB = B. This means

A ∪B = A ∪B = A ∪B = ∅

by the definition of disjoint. So also by definition, A andB are separated.

(b) prove they are separated if A,B are instead disjoint and open.
Proof by contradiction: assume A andB are not separated. Then A∩B or A∩B are not equal to ∅.
However, because open sets are equal to their interiors and A andB are disjoint and open,
A◦ ∩B◦ = ∅. ∂A = A\A (since the interior is equal to its set). So consider the case where
∂A ∩B ̸= ∅ (which must be the case if A ∩B by the parameters of this problem). Then
∃x ∈ A◦, B◦ (since the sets are equal to their interiors and by the definition of boundary point).
This is an immediate contradiction for A◦ ∩B◦ = ∅. A similar contradiction will arise in the only
other case of A ∩ ∂B ̸= ∅. Therefore, the sets must be separated.

7: Are closures and interiors of connected sets always connected?

We will prove closures of connected sets are connected by contradiction. Assume E is connected but
E isn’t. Then for E = A∪B, A∩B or A∩B is not the empty set. I proved in the last homework a
result that implies E = A ∪B. To not get confusing let A = A andB = B. We showed in homework
2 that the a set and its closure have the same limit points, so A = A ∪A′ = A ∪A′ = A. So we have
now shown that the closure of a closure is just the closure itself. This implies by the separation of E

A ∩ B = A ∩ B = A ∩B = ∅

By the last equality, since X ⊂ X, this implies that A ∩B = A ∩B = ∅, contradiction.

Interiors are not always connected. Consider the counterexample2 where we are in R2 and A is the
unit disk centered at the origin and B is the interior of the unit disk centered at (0, 2). Then
E = A ∪B is connected because A ∩B will be nonempty (consider (0, 1)). However, the interior of
E, which is the union of the interiors of A andB, is not connected because the aforementioned
intersection point is no longer contained in B

◦, so A◦ ∩B
◦
= A

◦ ∩B◦ = ∅

2credit to Sarah
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Weekly Homework 4

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: Prove that convergence of {sn} implies convergence of {||sn||}. Is the converse true?

For clarity, define the relevant sequences with respect to metric space (X, d). Also, we will use a
corollary to the triangle inequality that for x, y ∈ X d(||x||, ||y||) ≤ d(x, y) (see Rudin p.88).

Say that {sn} converges to p ∈ X. Fix ϵ > 0. Then by the definition of convergence
∃N ∈ N s.t ∀n > N d(sn, p) < ϵ. By the result above, n > N =⇒ d(||sn||, ||p||) ≤ d(sn, p) < ϵ.
Therefore, by definition {|sn|} is a convergent sequence.

The converse is not true. As a counterexample, {||(−1)n−1||} converges to 1 but {(−1)n−1} is not a
convergent sequence.

2: Consider the following limits

For a),b), c), and potentially future homeworks, we will first prove a version of the continuous
mapping theorem1: Suppose f : X → X is continuous and xn → x. If x, xn ∈ X ∀n, f(xn) → f(x)
Proof : (Rudin 4.6 implies it is clear, but just to be safe) Fix ϵ > 0. With respect to a metric space
(X, d), by the definition of continuity ∃δ > 0 s.t d(xn, x) < δ =⇒ d(f(xn), f(x)) < ϵ. So by the
definition of convergence, ∃n > N s.t xn ∈ Bδ(x), meaning d(f(xn), f(x)) < ϵ.

(a) lim(
√
n2 + n− n) = .5

First we will simplify the sequence to make it easier to work with√
n2 + n− n =

(
√
n2 + n− n)(

√
n2 + n+ n)√

n2 + n+ n
=

n√
n2 + n+ n

=

(√
n2 + n

n
+ 1

)−1

Consider that
√
n2+n
n =

√
n
√
n+1

n =
√
n+1√
n

=
√
n
√

1+1/n√
n

=
√
1 + 1/n. Therefore we have shown

√
n2 + n− n =

1√
1 + 1/n+ 1

By the result proven above2,
√
1 + 1/n → 1, so

√
n2 + n− n = 1√

1+1/n+1
→ .5

1Please scroll to the appendix for a proof of an → a =⇒ √
an →

√
a that does not directly use continuity

2also trivially, from class, 1
n
→ 0. The CMT result was used because in this case we have

√
1 + 1/n+ 1 → 2, and

g(x) = 1/x is a continuous mapping because all possible inputs (
√

1 + 1/n+ 1 with n ∈ N) are greater than 1

1
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(b) For α, β ∈ R, lim(α+ n)/(β + n) = 1
We will first show that |α/n|, |β/n| → 0. The key here is that α, β are fixed. So it follows the same
as 1/n → 0. But to be explicit, fix ϵ > 0. WLOG let |β| ≤ |α|. For all n > |α|/ϵ,
|β/n| < |α/n| < |α/ |α|

ϵ | = |α|/ |α|
ϵ = ϵ. Thus, α/n, β, n → 0. Now note that

α+ n

β + n
=

α
n + 1
β
n + 1

→ 1

explicitly by the CMT-type result at the top of #2 (in case there is a concern with inverses).

(c) For r0 =
√
2, define (an) by rn =

√
2 + rn−1. Show it converges to a limit ≤ 2

We will prove that the sequence is bounded by 2 and monotonistic with induction, and then invoke
the monotone convergence theorem to show it has a limit, which must be ≤ 2.

We WTS that rn < 2. We will prove this by induction. For the base case of n = 1:

r1 =
√
2 + r0 =

√
2 +

√
2 <

√
2 + 2 =

√
4 = 2

Now assume rn < 2. For the inductive step we will show rn+1 < 2

rn+1 =
√
2 + rn <

√
2 + 2 = 2

Also, note that by construction rn > 0. So rn is a bounded sequence. Further, we will prove rn is
monotonistic by induction. Formally, we WTS that rn > rn−1. For the base case of n = 1

r1 =

√
2 +

√
2 >

√
2 + 0 = r0

Now assume rn > rn−1. For the inductive step we will show rn+1 > rn by

rn+1 =
√
2 + rn >

√
2 + rn−1 = rn

Now we have shown (rn) is a bounded, monotonistic sequence. So by the monotonistic convergence
theorem it converges. For a brief proof by contradiction: assume its limit is greater than 2. Call the
limit α. Fix ϵ > 0. Then ∃N s.t ∀n > N d(rn, α) < ϵ. But because 0 < rn < 2 < α ∀n, it follows
that d(rn, 2) < d(rn, α) < ϵ. So 2 is a limit of rn. But rn ̸= α, and the limits of convergent
sequences are unique, contradiction. Thereofre, the limit of (an) ≤ 2

3: Let (X, d) be a metric space, (an) a sequence in X, and E the set of (xn)’s subsequential limits

First, a general note on this problem with clarification from Dr. Stokols: when a limit is infinite, we
consider the sequence divergent, so ±∞ cannot be in a set of subsequential limits.

(a) (an) bounded =⇒ E bounded
Consider first the trivial case where (an) has no subsequential limits, so E = ∅ (this could happen in
some space that is not Rn, for instance). Then E is bounded because ∅ is bounded.

Now consider the E nonempty case. We will perform a proof by contradiction: assume that E is
unbounded. Because (an) is bounded,from class we know ∃R ∈ R+ s.t ∀n ||an|| ∈ [−R,R]. So let
M = 2R. Then ∀m,n ∈ N d(an, am) < M . Pick α ∈ E such that α is the limit of the subsequence
(an)n∈A, where we are using the notation from class that A = {nk|k ∈ N} ⊆ N, and for some j ∈ N
d(aj , α) > 4M . This is possible because (an) is bounded but E isn’t, so we can pick an element of

2



Paul B. Math 531: Real Analysis I, HW4 April 23, 2022

E that is arbitrarily large. Fix ϵ ∈ (0,M). By the definition of a subsequential limit, ∃N s.t for
each i ∈ A that is greater than N , d(ai, α) < ϵ. Recalling that ∀m,n ∈ N d(an, am) < M ,
combining results and using the triangle inequality yields

0 < 4M < d(α, aj) ≤ d(α, ai) + d(ai, aj) < M + ϵ < 2M

Since 4M > 2M , this is a contradiction. We have analyzed all possible cases of E, so it’s bounded.

(b) E bounded ≠⇒ (an) bounded
Consider the infinite sequence 1

2 , 2,
1
3 , 3, . . . . Per the note at the top and confirmed in office hours

for this specific sequence, this sequence has only one subsequntial limit, 0, so E = {0} is bounded.
However, the sequence is unbounded because it has a subsequence that approaches infinity.

4: For a set X and d : X ×X → {0, 1} the discrete metric, (X, d) is complete

Per instruction, we will be focusing on Cauchy completeness.

Let (an) be a Cauchy sequence in (X, d). Fix ϵ ∈ (0, 1). Then by the definition of Cauchy,
∃N ∈ R s.t ∀j, k > N d(aj , ak) < ϵ. Since d(aj , ak) ∈ {0, 1} and 0 ≤ d(aj , ak) < ϵ < 1, these two
can only jointly hold if d(aj , ak) = 0. Therefore by the definition of the discrete metric, ∀j, k > N ,
aj = ak. This means the terms in any Cauchy sequences in (X, d) must become constant at some
point and are thus convergent. Formally: still using N based on the (arbitrarily fixed) ϵ, ∀j, k > N ,
let c = aj = ak. Then for all j > N |aj − c| < ϵ. So (an) is by definition a convergent sequence in
(X, d) because c ∈ X by construction, meaning every Cauchy sequence is convergent in (X, d).

5: Let (xn) be convergent in (X, d). A rearrangement yn = xg(n) converges to the same limit

First, let g : N → N be some bijection. Call yn = xg(n) the corresponding rearrangement. We WTS
that the sequence of rearranged terms (yn) converges to same limit as (xn). Note: it is important to
be careful about the definition of g(·). Per the definition of a rearrangement, g maps the position of
an item in the rearranged sequence to the corresponding position in x. Therefore, g−1(k) gives the
position of the kth item in the (xn) sequence in (yn) (bijection inverses are well-defined).

The idea behind this proof is that if one extends far enough out in a sequence, then its
rearrangement also must be past a certain point. Moreover, for each M ∈ N,
∃N ∈ N s.t ∀n > M g(n) > N , meaning that given an N that satisfies the definition of
convergence for (xn), we can find a natural number for (yn) that satisfies the definition for the same
limit. To these ends, define the following sets for a given M ∈ N

AM = {n ∈ N|i ∈ [1,M ]} and BM = {g−1(a)|a ∈ A}

BM gives all the positions of the first M terms of (xn) in the rearranged sequence. So for all n larger
than the largest element of BM (which corresponds to an index position), yn will not be one of the
first M elements of (xn). Now we will set out formally showing this result using precise indexing.

Let α be the limit of (xn). Fix ϵ > 0. Then by definition of a convergent sequence
∃M ∈ N s.t ∀n > M d(an, α) < ϵ. This implies there are finitely many terms where the distance
between α is greater than epsilon, in fact at most M of them. The definitions of AM andBM above
imply δ = maxB exists because AM , and therefore BM , are finite, bounded sets. Let
N = max{M, δ}. Then by construction, ∀n > N , yn /∈ (xn)n∈A. In other words, for all n > N , we

3
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have guaranteed any yn cannot be found in the first M terms of (xn) because g(n) > M . More
formally: ∀n > N d(yn, α) = d(xg(n), α) < ϵ. Therefore yn converges to α by definition.

6: Let (X, d) be complete and define f : X → X s.t ∃λ ∈ [0, 1) s.t
∀x, y ∈ X, d(f(x), f(y)) ≤ d(x, y). Then ∃xc ∈ X s.t f(xc) = xc

With respect to f , we will introduce some useful notation: define fn(x) = f(f(. . . f(x))) to be the n
nested iterations of f(f(x)) (i.e. using the previous value of f(x) as the input n times).
Subsequently define {xn}n∈N s.t given x0 ∈ X xn = fn(x0). We WTS3 that
∃xc ∈ X s.t f(xc) = xc.

By the contraction property of f given in the problem, for some λ ∈ [0, 1)

d(x3, x2) = d(f(x2), f(x1) ≤ λd(x2, x1) =≤ λ2d(x1, x0) =⇒ d(xn+1, xn) ≤ λnd(x1, x0)

since we can just reapply the property on the left hand side as many times as we want to get the
right hand side. Let m > n. Thus, by applying the triangle inequality an amount of times with
respect to the difference between m andn and again using the contraction property of f

d(xm, xn) ≤
m−1∑
i=n

d(xi+1, xi) ≤
( n−1∑
i=n

λi
)
d(x1, x0)

= λn

(m−n−1∑
i=0

λi
)
d(x1, x0)

≤ λn

1− λ
d(x1, x0)

from the hint given in the problem. Note λn

1−λ → 0. Fix ϵ > 0. Because d(x1, xm) is constant,
∃N s.t ∀n > N λn

1−λd(x1, x0) < ϵ. Therefore {xn} is Cauchy, and since we’re in a complete metric
space, define its limit to be xc. By applying the triangle inequality and contraction property

d(f(xc), xc) ≤ d(f(xc), f
n(x0)) + d(xc, f

n(x0)) ≤ λd(xc, f
n−1(x0)) + d(xc, f

n(x0))

By the definition of a point of convergence, ∃N ′ ∈ N s.t ∀n > (N ′ + 1) d(xc, xn) < ϵ/(λ+ 1)
(because we already fixed epsilon earlier). So let M = max{N,N ′ + 1}. Then for n > M

d(f(xc), xc) ≤ λd(xc, f
n−1(x0)) + d(xc, f

n(x0)) = λd(xc, xn−1) + d(xc, xn) < ϵ

Because ϵ is arbitrary, we can conclude f(xc) = xc

3Greg and I have seen this notation and result in a previous Macro class
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7: Define (xmn ) ∈ R s.t |xmn | ≤ 1 ∀m,n ∈ N. ∃A ⊆ N infinite s.t (xmn )n∈A is convergent (∀m ∈ N)

Since each (xmn )n is bounded, each one has a convergent subsequence by Bolzano-Weirstrass.
Moreover, every subsequence of (xmn )n is also bounded with a convergent subsequence.

Take A0 ⊆ N corresponding to a convergent subsequence of (x0n)n∈N and let a0 = inf A0, which is an
element of A0 since every subset of N has a least element. Take A1 ⊆ A0 corresponding to a
convergent subsequence of (x1n)n∈A0 and let a1 = inf A1 ∩ {n > a1}. Then a1 > a0 and a1 ∈ A1.
Continue this process iteratively, so Am ⊆ Am−1 corresponds to a convergent subsequence of
(xmn )n∈Am−1 and let am = inf Am ∩ {n > am−1}. Then am > am−1 and am ∈ Am.

Because An are nested, and any subsequence of a convergent subsequence also converges to the
same limit, (xmn )n∈Ak

is convergent for k ≥ m. We cannot take the union over the natural numbers
because "A∞” might be empty. So instead let A = {ak|k ∈}. Note that ak is an increasing infinite
sequence, so A corresponds to a subsequence. Further, for k ≥ m, ak ∈ Ak ⊆ Am. So
A ⊆ Am ∪ {a0, . . . , am−1}. Since (xmn )n converges along Am, and adding finitely many terms does
not affect converges, (xmn )n converges along A. So A gives us what we want.

Appendix We will prove the special case that an → a =⇒ √
an →

√
a

We will break up the proof into two cases. Initially, assume a ̸= 0. Then

0 ≤ |
√
an −

√
a|+ |an − a|

√
an +

√
a
≤ |an − a|√

a
→ 0

so
√
an → a by the squeeze theorem from calculus. If a = 0, then for each ϵ > 0 ∃N > 0 s.t for

n > N, |an − 0| < ϵ2 =⇒ |√an − 0| < ϵ ■.
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Weekly Homework 5

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: Let a < b ∈ R and (xn) ∈ [a, b]. lim inf xn = b =⇒ limxn = b

We will first define some additional notation to add onto what Dr. Stokols introduced in class. For
the set EN = {xi|i ≥ N}, let αN = supEN andβN = inf EN . Trivially note from the Rudin
definitions this means for all n ∈ N αn ≥ βn. Also, from the problem, notice that
b = lim inf xn = limβn (and similarly lim supxn = limαn).

We will show that lim supxn = b = lim inf xn, which we will prove implies the sequence limits to b.

We know EN ⊂ [a, b] ∀N ∈ N. sup[a, b], which is b since1 closed, bounded sets contain their
supremum, must be ≥ than the sup of any subset, so (∀N) αN ≤ b =⇒ b− αN ≥ 0, so

b− βN ≥ b− αN ≥ 0 =⇒ βN − b ≤ αN − b ≤ 0 =⇒ |αN − b| ≤ |βN − b|

because aN ≥ βN . Fix ϵ > 0. Since b = limβn, there exists M ∈ N s.t ∀n > M

|αn − b| ≤ |βn − b| ≤ ϵ

Thus, b = limαN = lim supxn. Now consider the original sequence (xn). Recall the aforementioned
M ∈ N we defined conditional on a fixed arbitrary ϵ. We know by construction/definition that
βn ≤ xn ≤ αn, but we also know from results derived above that for n > M

b− ϵ < βn ≤ xn ≤ αn < b+ ϵ =⇒ |xn − b| < ϵ

So by definition limxn = b

2: Let f : R∗ → R with at least one fixed point (c ∈ R). Define an+1 = f(an)

(a) an does not necessarily limit to a fixed point
Define f : R∗ → R s.t f(x) = x2 if x ∈ R and f(x) = −2 if x ∈ {∞,−∞}. f(0) = 0 and f(1) = 1,
so f(·) has two fixed points. If we start the sequence with a0 = 2, the sequence an+1 = f(an) will
clearly diverge to ∞. It cannot limit to a fixed point because this definition of a fixed point implies
it must lie in the codomain, which is R, ∞ cannot be a fixed point, especially with how we’ve
defined the function2, so an does not limit to a fixed point.

1Dr. Stokols clarified it was okay to use these properties in the HW
2note that at ∞ the sequence would start over again along a path towards divergence

1
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(b) If c is the only fixed point of f and lim sup f(an) = f(lim sup an) (same for lim inf), an → c
Note that the following result was proven in #1 (also see Rudin 3.18c)
For a sequence (xn), if ∃c ∈ R s.t c = lim supxn = lim inf xn =⇒ xn is convergent and limxn = c

We will first manipulate lim sup f(an) and lim inf f(an) to yield fixed points, which we know there
are only one of, so therefore lim sup f(an) = lim inf f(an), and we can apply the result above to
show the sequence converges to this fixed point.

Because an = f(an−1), lim sup f(an) = f(lim sup an) = f
(
lim sup f(an−1)

)
. Trivially, we know

lim sup f(an) = lim sup f(an−1). Explicitly, this is because by the definition of a limit, if we let
a = lim sup f(an), for any ϵ > 0 ∃N s.t | lim

(
sup{f(an)|n > N}

)
− a| < ϵ, so by extension N + 1

works for showing lim sup f(an−1) = a. With this definition of a,
lim sup f(an) = f

(
lim sup f(an−1)

)
=⇒ a = f(a). Therefore, a is a fixed point. Similarly for

lim inf, if we let b = lim inf f(an), then we know by the same given property of f that
lim inf f(an) = f

(
lim inf f(an−1)

)
, which implies that b = f(b). So b is a fixed point. Since we

know c is the only fixed point, c = a = b, so therefore lim sup f(an) = lim inf f(an) = c. We know
from the result above that this implies f(an) is convergent to c. Because f(an) = an+1, an+1 → c.
We can apply the argument showing lim sup f(an) = lim sup f(an−1) to confirm an → c.

3: lim sup(an + bn) ≤ lim sup an + lim sup bn ((an), (bn) ∈ R, lim sup an + lim sup bn ̸∼ ∞ −∞)

Define A = lim sup an andB = lim sup bn

First we will take case of the real case: assume −∞ < A,B < ∞. Fix ε > 0. Then by the definition
of the lim sup ∃N1, N2 ∈ N s.t

(∀n > N1) aN < A+ ε/2 and (∀n > N2)bn < B + ε/2

Let N = max{N1, N2}. Then ∀n > N an + bn < A+B + ε. Therefore3

lim sup(an + bn) ≤ A+B + ε. Because ε is arbitrary, this implies that lim sup(an + bn) ≤ A+B.
But just to be rigorous: suppose that were not the case for a contradiction. Then
lim sup(an + bn)− (A+B) > 0, so by the Archimedian property there exists
ε > 0 s.t lim sup(an + bn)− (A+B) > ε, contradiction. So given our definition of A+B,
lim sup(an + bn) ≤ lim sup an + lim sup bn.

Now we have two cases left to consider: ∞ = A = B and−∞ = A = B. The first case is trivial
because in R∗ its not possible for ∞ to be dominated from above. So assume A = B = −∞. If we
show that this implies lim sup(an + bn) = −∞, we are done. Suppose this is not the case. Let
lim sup(an + bn) = C. Either C ∈ R or C is ∞. However, we will show neither of these options are
possible because A andB are diverging towards −∞. Define AN = {ai|i ≥ N} andBN{bi|i ≥ N}.
For any n > N , we know that an ≤ supAN and bn ≤ supBN . Because supAN , supBN

N−→ −∞,
this implies that for any for any D ∈ R, there exists M ∈ N s.t ∀n > M ∈ N s.t an, bn < −|D|.
Taking the sum of sequence terms shows that no real number (and by extension ∞) can bound
an + bn from below. So the least upper bound of the set {ai + bi|i ≥ N} must be diverging towards
−∞ as N → ∞, thus C = −∞. In case you are not convinced of this argument, consult the even
more rigorous proof found in the appendix.

3Implied by Rudin 3.18c and Rudin 3.19. A+B is just a value in R. By Rudin 3.18c its limsup would be the limit
of a sequence of repeating terms of A+B, which is just A+B. Then Rudin 3.19 gives the final result

2
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4: Given the following sequences, do their infinite sums converge or diverge..

(a) an =
√
n+ 1−

√
n∑

an diverges. This is because
∑N

i=1 =
√
N − 1− 1 because each term in the sequence will

eliminate the term before it (e.g
∑2

i=1 =
√
3−

√
2 +

√
2− 1 =

√
3−

√
1). So we know that the

partial sums sn =
√
n− 1− 1. Clearly sn → ∞, so the infinite sum diverges

(b) bn = an/n∑
bn converges. Note that

bn =
an(

√
n+ 1 +

√
n)

n(
√
n+ 1−

√
n)

=
1

n(
√
n+ 1−

√
n)

<
1

n(2
√
n)

<
1

n1.5

In class, we established that
∑

1/np converges if p > 1. So
∑

bn converges by the comparison test

5: If an ≥ 0,
∑

an converges =⇒
∑√

an/n converges

We will prove this using the fact that x1, x2 ≥ 0 =⇒ 2(
√
x1x2) ≤ x1 + x2, which follows from

Cauchy-Schwarz and is otherwise known as the AM-GM inequality. Using this result

2
√
an
n

=
2
√
an√
n2

≤ an + 1/n2

with x1 = an andx2 = 1/n2, which are both non-negative. We know 1/n2 converges from #4 b), so
the RHS converges since

∑
an converges. Thus

√
an/n converges by comparison test.

3
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Appendix - #3, A = B = −∞ case

We have shown C = lim sup(an + bn) ̸= ∞. So we have one sub-case left to consider. Define
CN = {ai + bi|i ≥ N}. Assume C ∈ R. By construction of CN , this implies that given n > N ∈ R,
an + bn ≤ supCN . Because C ∈ R, let N ′ be the smallest positive integer such that supCN ′ is not
∞. Let C ′ = supCN ′ . Because lim sup is decreasing and C ∈ R, note C ′ ≥ supCn and supCn ∈ R
for all n > N ′. By the definition of the least upper bound, given M ∈ N s.t M > N ′,
∃m > M s.t ∀ε > 0, supCM − ε < am + bm (if this did not hold then there would be a smaller
upper bound). Combining the past couple results, by the Archemedian property
∃a ∈ N s.t −|a · C ′| ≤ an + bn for all n > N ′. Because A andB are diverging towards negative
infinity, we know there exists n ∈ N s.t an, bn < −|D|. −|a · C ′| ∈ R, contradiction.

4
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Weekly Homework 6

Paul B.
Math 531: Real Analysis I

April 23, 2022

1:
∑

an converges and (bn) monotonic and bounded, then
∑

anbn converges

Note per instruction, (an) ∈ C and(bn) ∈ R. Also, note that by the monotonic convergence theorem
(bn) is convergent, so define b ∈ R s.t bn → b. Define Sn as

∑n
i=0 ai (partial sums). Because

∑
an

is convergent, we know ∃M ∈ R+ s.t |Sn| ≤ M ∀n. For this proof, we will use Rudin 3.41 and
mimic the steps of the proof for Rudin 3.42. We will also use two cases in order to satisfy the
conditions/proof strategy of 3.42. One could just apply 3.42 directly but we will be rigorous.

(Case 1) Assume bn is monotonic increasing
Define cn = b− bn. (cn) is a decreasing sequence since −bn ≥ −bn+1 =⇒ b− bn ≥ b− bn+1 by the
usual properties of R and the fact that (bn) is increasing. Fix ε > 0. Because we also know (cn)
converges to 0 and is monotonic decreasing, it must follow that cn ≥ cn+1 ≥ 0 ∀n, otherwise
contradiction for either monotonistic decreasing or converging to 0. So putting all this together,
because cn → 0, ∃N s.t cN ≤ ε

2M . Let N ≤ p ≤ q. By (cn) decreasing, cp ≤ cN , so by Rudin 3.41

|
q∑

n=p

ancn| = |
q−1∑
n=p

Sn(cn−cn+1)+Sqcq−Sp−1cp| ≤ M |
q−1∑
n=p

(cn−cn+1)+cq−cp| = 2Mcp ≤ 2McN < ε

where we also used the fact that cp is non-negative. Note that |
∑q

n=p ancn| is equivalent to the
absolute difference in the partial sums of

∑
ancn for N ≤ p ≤ q. Therefore, the partial sums are

Cauchy, thus convergent, so
∑

ancn converges. Now, we have∑
ancn =

∑
anb−

∑
anbn =⇒

∑
anbn = b

∑
an −

∑
ancn

b
∑

an is convergent because
∑

an is convergent. So from a result in class,
∑

anbn is the sum of
two convergent series, so is therefore convergent itself.

(Case 2) Assume bn is monotonic decreasing
Define cn = bn − b. We have all the same conditions we established for the sequence used in Case 1
by the same logic: (cn) is a decreasing sequence because bn ≥ bn+1 =⇒ bn − b ≥ bn+1 − b. We also
know (cn) converges to 0 and cn ≥ cn+1 ≥ 0. Therefore, by repeating the steps in Case 1,

∑
ancn is

convergent. So
∑

anbn =
∑

ancn − b
∑

an is the sum of two convergent series, and is convergent.

We have dealt with all cases. So
∑

anbn converges.

1
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2: If an ≥ 0 and an → 0, then ∀ε > 0 there exists a subsequence of (an) s.t
∑∞

k=0 |ank
| < ε

This proof will follow similarly to the strategy used to show that the set of all subsequential limits is
closed. Of course, we will adapt the strategy for the series setting as needed. Essentially, we will
construct a subsequence ourselves that leads to an easy creasing of an infinite, convergent series that
bounds from above.

First, note that |an| = an∀n since the sequence is non-negative. Fix ε > 0. Now define the following
sub-sequence, let an0 be an element of (an) s.t an < ε/2. Now, set nk > nk−1 and define
ank

s.t ank
< ε

2k+1 . Such a construction is possible because an → 0, so there are infinitely many
sequence terms that are less than any positive real number. Now, note that we have

∞∑
k=0

|ank
| =

∞∑
k=0

ank
<

ε

2
(
∞∑
k=0

1

2k
) = ε

by the standard geometric sum property.

3: lim inf an+1

an
> 1 and∀n > N an+1

an
≥ 1 (some N) imply divergence. What’s the connection?

If the first condition holds, then the second condition also holds. The converse is not true.

Define α = lim inf an+1/an > 1 andEM = {ai+i/ai|i ≥ M}. Fix ε > 0. By the definition1 of lim inf,
∃N s.t ∀n > N − 1 | inf En − α| ≤ ε. This implies that inf EN > 0 since N > N − 1 (if inf EN ≤ 0
then the previous result would not hold for any ε < 1). We can extend this logic behind this
argument to say that we know inf EN ≥ 1, but we will be a bit more precise about this point.
Suppose 1 > inf EN for a contradiction. Then since α > 1 > inf EN > 0

1− inf EN = | inf EN − 1| ≤ | inf EN − α| < ε

so by definition lim inf an = 1, but limits must be unique, contradiction. Thus, by our construction
of EN and intuitively because (inf En) is an increasing sequence, 1 ≤ inf EN ≤ an+1/an ∀n > N .

However, if the second condition holds, the first does not necessarily hold. Consider an = 2 ∀n.∑
an diverges by an+1/an ≥ 1 ∀n > 1. But lim inf an+1/an = 1, so the ratio test is ambiguous.

4: The comparison test can encourage some unhelpful intuition, so in light of this..

Note form Dr. Stokols: all terms of every series are strictly positive

(a) Given
∑

xn divergent, ∃(an) s.t lim sup an
xn

= 0and
∑

an diverges
Let Sn =

∑n
i=0 xi (partial sums). Then let an = xn

Sn
. We will first show that a divergent series of

only positive terms must be diverging to ∞. This will prove that lim sup an/xn is ∞. We will then
use the strategy from Rudin #11 to show that

∑
an diverges.

First, note that Sn does not converge to anything because
∑

xn is a divergent series. Also, since
xn > 0, Sn < Sn + xn+1 = Sn+1 ∀n. Thus, Sn is a monotonic increasing sequence. Assume for a
contradiction that Sn is bounded. Then by the monotonic convergence theorem, Sn has a limit,
contradiction. Therefore, Sn is unbounded. It follows trivially that the lim sup of a positive,

1using the in class definition. See last homework for a bit more context if needed

2
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increasing, and unbounded sequence will be infinite. Therefore lim sup an
xn

= lim sup 1
Sn

= 0. Now,
define S′

n as the partial sums of
∑

an. If m > n and k = m− n, since Sn is strictly increasing

|S′
m − S′

n| =
xn+1

Sn+1
+ · · ·+ xn+k

Sn+k
≥

∑k
i=1 xn+i

Sn+k
=

Sn+k − Sn

Sn+k
= 1− Sn

Sn+k
> 0

because the positive, strict monotonicity conditions yield Sn
Sn+k

∈ (0, 1). Therefore, the sequence of
partial sums of

∑
an is not Cauchy, so now convergent, meaning

∑
an diverges

(b) Given
∑

yn soncvergent, ∃(bn) s.t lim inf bn
yn

= ∞ and
∑

bn converges
Let rn =

∑∞
i=n yn and bn = yn√

rn
. We will first show that rn → 0, which will show lim inf yn

bn
= ∞.

Then, we will use the strategy outlined in Rudin #12 to show that
∑

bn is convergent.

Because yn is convergent, its partial sums (Sn) are Cauchy. Therefore, for any ε > 0,
∃N s.t ∀m,n > N |Sm − Sn| <

∑m
i=n yi < ε (since yi > 0 ∀i). Because this holds ∀m,n given an

N , we can represent this in the context of a limit definition as |
∑∞

i=n yi − 0| = rn < ϵ. Thus,
rn → 0. From the result I proved in the appendix of HW # 5, this implies

√
rn → 0. Moreover, rn

is a decreasing sequence because yn is a positive sequence, so rn+1 < rn+1 + yn = rn. Therefore, for
any M ∈ R, ∃N s.t ∀n > N 1√

ri
> M . Thus, we now have lim inf bn

yn
= lim inf 1

rn
= ∞ because the

limit of the greatest lower bound for { 1√
ri
|i ≥ n} is infinite.

Recall from above 0 < rn+1 < rn = rn+1 + yn. Then rn+1

rn
∈ (0, 1) =⇒ 1 +

√
rn+1

rn
< 2 and further

=⇒ an√
rn

=
1

√
rn

(rn − rn+1) =
√
rn +

√
rn+1 −

(
√
rn+1 +

rn+1√
rn

)
=

(
1 +

√
rn+1

rn

)(
√
rn −√

rn+1

)
=⇒ an√

rn
< 2(

√
rn −√

rn+1)

Now taking this over sums, since
√
rn → 0 (and implicit from above bn > 0 ∀n)

0 <
n∑

i=0

bi =
n∑

i=0

ai√
ri

< 2
n∑

i=0

(
√
ri −

√
ri+1) = 2(

√
r0 −

√
rn+1) → 2

√
r0

So
∑

bn converges by comparison because 0 < r0 =
∑

yn, a convergent series.

5: Given
∑

an with partial sums SN , if C[an] = limN (
∑N

i=0 Si)(N + 1)−1, called the Cesàro sum,
converges, then

∑
an is Cesàro summable

(a)
∑

an converges =⇒
∑

an is Cesàro summable and
∑

an = C[an]
Fix ε > 0, let lim

∑
an = α, and denote2 the partial sums of

∑
an by (Sn). Because

∑
an is

convergent, we know ∃N1 ∈ N s.t ∀n > N1 d(Sn, α) ≤ ε
2 . By the Archemedian property (and the

fact we know we can bound this particular finite sum), ∃N2 s.t |
∑N1

i=0 Si−α|
N2+1 < ε

2 .

2credit to Greg for notation and sequencing of proof strategy. Stategy itself devised jointly. Our logic was that
if you, for instance, take 1 + 2 + 3 + 3 + 3 + . . . if you add enough 3s to the sum, the average of the series will be
arbitrarily close to 3. We can apply this to any convergent series, where the partial sums are converging to something

3
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Now for n ∈ N s.t n ≥ max{N1, N2}, by the triangle inequality∣∣∣∣
∑N1

i=0 Si +
∑n

j=N1+1 Sj

n+ 1
− α

∣∣∣∣ ≤ ∣∣∣∣S0 + . . . SN1 − (1 +N1)α

n+ 1

∣∣∣∣+ ∣∣∣∣SN1+1 + · · ·+ Sn + α
(
n− (N1 + 1)

)
n+ 1

∣∣∣∣
≤ |S0 − α|+ . . . |SN1 − α|

n+ 1
+

|SN1+1 − α|+ · · ·+ |Sn − α|
n+ 1

<
ε

2
+

(n+ 1)ε

2(n+ 1)
= ε

Now note that C[an] = lim

∑N1
i=0 Si+

∑N
j=N1+1 Sj

N+1 . Therefore, the above logic shows that C[an] → α,
meaning its convergent, and thus Cesàro summable, and also has the same value as

∑
an

(b)
∑

an Cesàro summable =⇒
∑

an+1 is also, and C[an] = a0 + C[an+1]
We will prove the second result (C[an] = a0 + C[an+1]) which will imply the first.

Given
∑

an Cesàro summable. Let S′
n denote the partial sums of

∑
an+1. Note that each S′

n starts
at a1 and ends with an+1 we have

C[an] = lim
S0 + · · ·+ SN+1

N + 1
= lim

a0 + (a0 + a1) + (a0 + a1 + a2) + . . . (a0 + · · ·+ aN+2)

N + 1

= lim
a0 + a0 + S′

n + . . . a0 + S′
N+1

N + 1

= lim
(N + 1)a0
N + 1

+ lim

∑N+1
i=0 S′

i

N + 1
= a0 + C[aN+1]

If
∑

an+1 was not Cesàro summable, then C[aN+1] would be a divergent term. Because a0 is just
some fixed sequence term, this would imply C[an] was also divergent, meaning

∑
an would not be

Cesàro summable, contradiction. Thus,
∑

an Cesàro summable =⇒
∑

an+1 is also.

(c) What is the Cesàro sum of 1− 1 + 1− 1 + . . .
We have S0 = 1, S1 = 0, S2 = 1, S3,= 0, . . . . So for every even index, the partial sum is 1 and every
odd index the partial sum is 0. So the sequence of

∑N
i=0 Si

N+1 follows 1, 12 , 2
3 ,

2
4 . . . for N = 0, 1, 2, 3, . . . .

So all terms of the subsequence of odd indices are .5. The subsequence of even indices is decreasing
and bounded by [0, 1], so it must be convergent by the monotonic convergence theorem. If this
subsequence converges to a limit that is not .5, that would be a contradiction because the
subsequence of even and odd indices together make up the entire sequence, and limits must be
unique. So the subsequence of even terms converges to .5, and the sequence does as well. Notice
that lim

∑N
i=0 Si

N+1 is the Cesàro sum, so we have proved the Cesàro sum is .5.

(d) Using regularity, stability, and linearity, 1+2+4+8+ . . . is Cesàro summable =⇒ its sum is -1
If 1 + 2 + 4 + 8 + . . . is Cesàro summable, then let its Cesàro sum be C ∈ R. By part a, we also
know that C is equal to the sum of the series. Thus, by the other properties we established
(regualrity, stablility, and linearity), we can say

C = 1 + 2 + 4 + 8 + · · · = 1 + 2(1 + 2 + 4 + 8 + . . . ) = 1 + 2C =⇒ C = −1

Clearly, the previous result establishes a contradiction. All the terms of the Cesaro sum are positive.
So the limit of positive terms cannot possibly yield a negative number by the standard properties of
real numbers. Therefore, it is not Cesàro summable. If you would like a more mathematical reason

4
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the the fact we arrived at a paradoxical result in a "proof by contradiction" fashion by assuming it
was in fact summable, we can also see this by noting the sum of partial sums generalize to 2N .
Because for any M,n fixed ∃m s.t 2m > M2n, we know from an analogous example with factorials
from class, ∃N s.t ∀n > N2n > Mn. Because M can be arbitrarily large, this implies the Cesàro
sum (lim 2N+1

N+1 ) is diverging to ∞.

5
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Weekly Homework 7

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: Find the radius of convergence of the following:

Important Note: For these calculations, we will use R = lim sup
∣∣∣ an
an+1

∣∣∣. This definition is in
several other analysis texts and also implied by Rudin 3.37. Also, we will not rigorously prove these
results, as we are only asked to calculate. Proofs of analogous results can be found in previous HWs.

(a)
∑

n3zn

R = lim sup

∣∣∣∣( n

n+ 1

)3
∣∣∣∣ = 1

(b)
∑

(.5nn!)−1zn

R = lim sup

∣∣∣∣ .5n+1(n+ 1)!

.5nn!

∣∣∣∣ = lim sup .5(n+ 1) = ∞

(c)
∑

(.5nn2)−1zn

R = lim sup

∣∣∣∣ .5n+1(n+ 1)2

.5nn2

∣∣∣∣ = lim sup .5

(
n+ 1

n

)2

= .5

(d)
∑

(3nn3)−1zn

R = lim sup

∣∣∣∣3n+1(n+ 1)3

3nn3

∣∣∣∣ = lim sup 3

(
n+ 1

n

)3

= 3

2: Let a, b, c ∈ R∞ s.t ck := akbk

(a) p ∈ [1,∞), a ∈ ℓ∞, and b ∈ ℓp =⇒ c ∈ ℓp

a ∈ ℓ∞ means ∃M ∈ R+ s.t supk |ak| < M . b ∈ ℓp means
∑

|bk|p is finite. So1∑
|ck|p =

∑
|akbk|p ≤

∑
|Mbk|p = Mp

∑
|bk|p < ∞

implying that c ∈ ℓp by definition
1Please note for the rest of the assignment that, per the notation used in Rudin,

∑
xk =

∑∞
k=0 x

k

1
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(b) a, b ∈ ℓ2 =⇒ c ∈ ℓ1

For a, b ∈ R, |ab| = |a| · |b|. So by the Cauchy-Schwarz inequality(∑
|ck|

)2
=

(∑
|akbk|

)2
=

(∑
|ak| · |bk|

)2
≤

∑
(|ak|)2

∑
(|bk|)2 = ||a||22 · ||b||22

Because the square root function preserves ordering

=⇒ ||c||1 =
∑

|ck| =
√
(
∑

|ck|)2 ≤
√
||a||22 · ||b||22 = ||a||2 · ||b||2 < ∞

since a, b ∈ ℓ2 =⇒ ||a||2, ||b||2 < ∞. Therefore, by definition c ∈ ℓ1

3:

en = (ekn)k∈N, e
k
n =

{
1 if k=n
0 otherwise

(a) For p ∈ [1,∞], show (en)n∈N in ℓp is divergent
Given, p ∈ [1,∞], let ε =

||e2−e1||p
2 . Note that ε > 0 by construction. If our p ∈ R then

||e2 − e1||p = 2
1
p because we will have two occurrences of 1p in our infinite sum. If p = ∞,

||e2 − e1||p = 1 because the absolute difference between any two components of e1 and e2 will either
be 1 or 0 (so sup across all k is 1). Further, note ∀m,n ∈ N s.t m ̸= n, ||e2 − e1||p = ||em − en||p.
This is because all will only have one component in each that is 1 and they will never be in the same
place since m ̸= n. So ∀m,n s.t m ̸= n

0 < ε < ||em − en||p

So (en)n∈N is not Cauchy, and is therefore divergent in ℓp, a complete space

(b) For k fixed, we will show limn e
k
n = 0. Fix k ∈ N. Now let N > k. Therefore,

∀n ∈ N s.t n > N , ekn = 0. So ∀ε < 0, |ekn − 0| < ε. So by definition, limn e
k
n = 0

4: Show that {x ∈ ℓ1|
∑

xk = 0} is closed

Let A = {x ∈ ℓ1|
∑

xk = 0}. We will show Ac = {x ∈ ℓ1|
∑

xk ̸= 0} is open.

Given x ∈ Ac ⊆ ℓ1, we know
∑

xk is absolutely convergent, thus convergent, so let M =
∑

xn ̸= 0.

First, assume M > 0. Because open balls are defined with respect to ℓ1, given y ∈ BM
2
(x) ⊆ ℓ1, by

definition
∑

|xk − yk| < M
2 . Since xk − yk ≤ |xk − yk| and y ∈ ℓ1 (so

∑
yk converges), we have∑

xk −
∑

yk =
∑

xk − yk ≤
∑

|xk − yk| < M

2
=⇒ 0 <

M

2
=

∑
xk − M

2
<

∑
yk

Thus, for x ∈ Ac, ∃ε > 0 s.t any y ∈ Bε(x) is in {x ∈ ℓ1|
∑

xk = 0}, so Bε(x) ⊆ Ac.

Now, assume M < 0 (consult above case for analogous details). Let ε = |M2 | and y ∈ Bε(x). Then∑
yk −

∑
xk ≤

∑
|yk − xk| < ε =⇒

∑
yk <

∑
xk + ε =

M

2
< 0

Thus, for x ∈ Ac, ∃ε > 0 s.t any y ∈ Bε(x) is in {x ∈ ℓ1|
∑

xk = 0}, so Bε(x) ⊆ Ac.

So for all cases of x ∈ Ac, we can find an open ball that is a subset of Ac. So Ac is open.

2
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5: Let p ∈ [1,∞]. Show that any compact set in ℓp has empty interior

Proof by contradiction: given any p ∈ [1,∞] and K ∈ ℓp compact, suppose K◦ ̸= ∅. Then let
x ∈ K◦ ⊂ R∞. Define open balls with respect to the p-norm. Then, by the definition of an interior,
∃ε > 0 s.t Bε(x) ⊂ K◦ ⊂ K. I proved on a previous homework A ⊂ B =⇒ A ⊂ B. We know
K = K by the definition of compactness. So Bε(x) ⊂ K.

Because compactness implies sequential compactness, any infinite sequence in K has a subsequence
that converges in K. We will show this is not the case for Bε(x). Define2 yn = x− ε

2en. Then

||x− y||p = ||ε
2
en||p = ε < 2

by linearity and ||en|| = 1. So yn ∈ Bε(x). Similar to #3, we know ∀m,n ∈ N s.t m ̸= n

||ym − yn||p = ||ε
2
(en − em)||p =

{
ε
22

1
p if p ∈ R

ε
2 otherwise

=⇒ ||ym − yn||p >
ε

4

since .5 < 2
1
p ∀p ≥ 1. This holds ∀ non-equal m,n, so we cannot make a Cauchy (and therefore

convergent) subsequence because all terms in any subsequence will be more than ε
4 apart. Thus, we

have found an infinite sequence without a subsequence convergent in K, contradiction. So K◦ = ∅.

6: Define ℓ∞0 = {x ∈ ℓ∞| limk x
k = 0}. In ℓ∞, RN = ℓ∞0

Just for simplified set notation, let A = ℓ∞0 . Since we are in ℓ∞, Ac = {x ∈ ℓ∞| limk x
k ̸= 0}. The

closure of RN ⊆ ℓ∞ is the set of all x ∈ ℓ∞ s.t ∀ε > 0 Bε(x) ∩ RN ̸= ∅. We will show first A ⊂ RN

by x ∈ A =⇒ x ∈ RN. Then we will show RN ⊂ A by x /∈ A =⇒ x /∈ RN (contraposition).
Important note: Elements in RN have a finite number of non-zero terms. So given y ∈ RN, for
some N , yk = 0 if k > N . Moreover, by defining balls with respect to the sup-norm since we’re in
ℓ∞, if y ∈ Bε(x), then supn |xn − yn| < ε, which means ∀k yk ∈ (xk − ε, xk + ε)

First, take x ∈ A (so limk x
k = 0).

Fix ε > 0. Then ∃N s.t ∀k > N |xk − 0| < ε. Let x′ = (x1, . . . , xN , 0, 0, . . . ). x′ ∈ Bε(x) because
0 ∈ (xk − ε, xk + ε) ∀ k > N . From above, x′ ∈ RN. So x′ ∈ Bε(x) ∩ RN, clearly meaning
Bε(x) ∩ RN ̸= ∅. By the definition of a closure, x ∈ RN. So A ⊂ RN

Now, take x ∈ Ac (so limk x
k ̸= 0)

Then by the definition of a limit and the Archedmedian property, for any N ′ ∈ N ∃i > N ′ and
ε > 0 s.t |xi| > ε. We know, given y ∈ RN, ∃M s.t ∀k > M yk = 0. Thus, for some i > M and
ε > 0, yi = 0 /∈ (xi − ε, xi + ε). So y /∈ Bε(x) and, since this holds for any y ∈ RN, Bε(x) ∩ RN = ∅.
By the definition of a closure, x /∈ RN. Using contraposition ("not q implies not p"), RN ⊂ A

We have shown A ⊂ RN andRN ⊂ A. Thus RN = ℓ∞0

2credit to Sarah for the construction of this sequence. Proof strategy was devised collectively
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Weekly Homework 8

Paul B.
Math 531: Real Analysis I

April 23, 2022

2: For (X, d) metric space and E ⊂ X closed and non-empty

(a) f : x → R s.t x 7→ d(x,E) is continuous
Fix ε > 0. Let δ = ε

2 , x ∈ X, z = Bδ(x), and y ∈ Y . By the triangle inequality

d(y, z) ≤ d(x, y) + d(x, z) and d(x, y) ≤ d(x, z) + d(y, z)

Taking the inf over all y ∈ E of each side of the inequalities

=⇒ d(z, E) ≤ d(x,E) + d(x, z) and d(x,E) ≤ d(x, z) + d(z, E)

by definition of d(·, E). Since z ∈ Bδ(x) and f(x) = d(x,E)

=⇒ f(z) ≤ f(x) +
ε

2
and f(x) ≤ ε

2
+ f(x) =⇒ f(z)− f(x), f(x)− f(z) ≤ ε

2

Thus, |f(x)− f(z)| < ε given d(x, z) < δ. Since dR(x, z) = |x− z|, f is continuous.

(b) If K ∩ E = ∅ and K compact, d(X,E) > 0
Proof by contradiction: assume d(K,E) = 0. Because K andE are disjoint, there must exist a
sequence (kn) ∈ K s.t d(kn, E) → 0 (otherwise infk∈K d(k,E) would be positive). This will be the
key for establishing the contradiction. Similarly, ∃(en) ∈ E s.t d(kn, en) → 0.

By the completeness of R,
(
d(kn, en)

)
is Cauchy. Fix ε > 0. Then ∃N ∈ N s.t ∀m,n > N

d(kn, en) <
ε

2
and d(km, en) <

ε

2

Then by the triangle inequality d(kn, km) < ε. So (kn) is Cauchy. Because compact sets are
complete, ∃k ∈ K s.t kn → k. By the continuity of f and Rudin 4.6, f(kn) → f(k). Note from
above that f(kn) → 0, and since limits are unique f(k) = 0. However, E = E since E is closed, so
K andE disjoint =⇒ K ∩ E = ∅. f(k) = 0 iff k ∈ E, but k ∈ K, contradiction.

1
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3: For Y complete and continuous f : E → Y (E ⊂ X),∃f : E → Y s.t f(x) = f(x) ∀x ∈ E

Let x ∈ E′. Then from #6, we know ∃ a sequence (xn) ∈ E s.t xn → x. So therefore, (xn) is
Cauchy, and for any σ > 0∃M ∈ N s.t ∀m > n ≥ M |xm − xn| < σ By this fact and uniform
continuity, for each ε > 0 ∃ δ > 0

|xm − xn| < δ =⇒ |f(xn)− f(xy)| < ε

where we know this is a well-defined construction by letting σ = δ in our previous Cauchy result.
Thus, we have also now shown

(
f(xn)

)
is also Cauchy. So f(xn) → y for some y ∈ R.

Therefore, define

f : E → Y s.t f(x) =

{
f(x) x ∈ E

lim
xn→x

f(xn) x ∈ E′ (and xn ∈ E)

The work we’ve done shows this is well-defined. Now we need to show its continuous and unique.

Since f , any therefore f , is continuous for x ∈ E, we just need to show the x ∈ E′ case.
Let (xn), (zn) ∈ E be sequences such that xn → x, zn → z. Note that x, z ∈ E′. So by construction,
f(xn) → f(x) and f(zn) → f(zn). Fix ε > 0. From previous HW, we know there some M satisfies
both limit definitions: ∃M ∈ N s.t ∀n > M dY (f(x), f(xn)), dY (f(z), f(zn)) <

ε
3 . For σ > 0,

impose dX(x, z) < σ
2 . We also know d(xn, zn) → d(x, z). So ∃M ′ ∈ N s.t ∀n > M ′

|dX(xn, zn)− dX(x, z)| < σ. Imposing dX(x, z) < σ
2 andn > M ′, dX(xn, zn) < σ. By uniform

continuity, ∃δ > 0 s.t dX(xn, zn) < 2δ =⇒ dY (f(xn), f(zn)) <
ε
3 . Now let N = max{M ′,M}. For

n > N and dX(x, z) < δ (consider σ = 2δ), by the triangle inequality (twice)

dY (f(x), f(z)) ≤ dY (f(x), f(xn)) + dY (f(y), f(xn))

≤ dY (f(x), f(xn)) + dY (f(y), f(yn)) + dY (f(xn), f(zn)) < ε

where we used dX(x, z) < δ =⇒ dX(xn, zn) < 2δ. So we just showed that n > N, xn → x, zn → z,
dX(x, z) < δ =⇒ dY (f(x), f(z)) < ε. We’ve now shown all x ∈ E cases, so f is continuous.

We now need to show uniqueness. We want to make sure there is not another extension, call it g
that is not equal to f . However, note that for g to be an extension of f , it must satisfy
g(x) = f(x) ∀x ∈ E. This implies g(x) = f(x) ∀x ∈ E. Trivially, E is dense in E (details in # 6).
So by the second part of #6, g(x) = f(x) ∀x ∈ E =⇒ g(x) = f(x) ∀x ∈ E. So f is unique.

2
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4: Given E = {0, 20, 2−1, 2−2, . . . with the usual metric on R

(a) For (X, d) metric space and (an) ∈ X, lim an = a iff the following is continuous: f : E → X s.t

f(x) :−

{
an x = 2−n

a x = 0

=⇒ Fix ε > 0. Then ∃N ∈ N s.t ∀n > N d(an, a) > 0. Let δ = 2−N > 0. Then
∀n s.t 2−n = |2−n − 0| < δ, d(f(x), 0)) = d(an, a) < ε. Further, note that
∀m s.t m ̸= n and 2−m < δ, |2−n − 2−m| < 2−n < δ. Because (an) is convergent it’s Cauchy, so by
our previous construction, any such |2−n − 2−m| < δ =⇒ d(an, am) < ε. Thus, f is continuous.

⇐= Fix ε > 0. By continuity, ∃δ > 0 s.t |2−n| < δ =⇒ d(an, a) < ε. 2n > n (from class, n ∈ N).
So n > δ−1 =⇒ 2−n < n−1 < δ =⇒ d(an, a) < ε. Thus, ∀n > N = δ−1, d(an, a) < ε, so an → a.

(b) f : X → Y is continuous iff for every continuous g : X → Y , f ◦ g : E → Y is continuous
=⇒ Shown in class (Rudin 4.7)

⇐= Each term in E is either 0 or takes the form 2−n for some n ∈ N. So given a sequence (en) ∈ E,
we must have en → 0. Because g is continuous, this implies by Rudin 4.6 that g(en) → g(0). Now
let an = g(en) and a = g(0). We have shown that an → a in X. Further, because g can be any
continuous function, we know that given (an) ∈ X, ∃g : E → X and(en) ∈ E s.t g(en) = an. By
f ◦ g continuous, since an = g(en) → g(0) = a, f(an) = f(g(en)) → f(g(0)) = f(a). Because (an)
can be any sequence in X, this shows that f is continuous

5: Given f on R s.t ∀x limh→0[f(x+ h)− f(x− h)] = 0,f is not necessarily continuous

Consider f : R → R s.t f(x) =

{
x−2 x ̸= 0

0 x = 0
. We know from class f is not continuous on R (the

limit, from both the left and right, of f(x) as x → 0 does not exist). But at x = 0

lim
h→0

[f(x+ h)− f(x− h)] = lim
h→0

[(h)−2 − (−h)−2] = 0

3
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6: Given f, g : X → Y continuous andE ⊂ X dense

(a) f(E) is dense in f(X)
Given E ⊂ X, from Rudin 2.18j, E is dense in X if each x ∈ X is in E′ or E. If x ∈ E, f(x) ∈ f(E).
So let x ∈ E′ and U ⊂ f(x) some open neighborhood in Y centered around f(x). By continuity,
f−1(U) is open and contains x. Because x ∈ E′, f−1(U) ∩ E ̸= ∅. So let y ∈ f−1(U) ∩ E. Then
f(y) ∈ U ∩ f(E), so the intersection is non-empty, meaning f(x) is a limit point of f(E)

If x /∈ X, then f(x) /∈ f(X), meaning z ∈ f(X) =⇒ z ∈ f(E) ∪ f(E)′. So f(E) is dense in f(X)

(b) g(p) = f(p) ∀ p ∈ E =⇒ g(p) = f(p) ∀ p ∈ X
Given p ∈ X, from a) we know p ∈ E ∪ E′. So first assume p ∈ E. Then we are already given
g(p) = f(p). Now assume p ∈ E′. Then by the definition of a limit point (Rudin 2.20 - any
neighborhood contains infinitely many points of the set) and from class we know ∃ a sequence
(pn) ∈ E that converges to p. Because pn ∈ E ∀n ∈ N, g(pn) = f(pn). Further, by continuity,
lim
x→p

f(x) = f(p) and lim
x→p

g(x) = g(p), so g(pn), f(pn) → f(p), g(p). However, because limits are

unique and g(pn) = f(pn)∀n, they must converge to the same point, implying g(p) = f(p). We’ve
now covered all possible x ∈ X, given E ⊂ X dense.

7: Given f uniformly continuous function on E ⊆ R bounded

(a) f is bounded on E
Per approval from Dr. Stokols, we will just use our powerful result from #3 to make this follow
pretty quickly. First, note that the closure of E is closed. It is also bounded because its the smallest
closed set containing E, and we know from class for any bounded set E ∃R ∈ R+ s.t E ⊆ [−R,R].
So therefore, E is compact. From #3, because f is uniformly continuous, the extension f is
continuous on E. By a theorem from class, because f is continuous and E is compact, f(E) is
compact. From #3: each y ∈ f(E) is in f(E), so f(E) ⊂ f(E), meaning it’s bounded.

(b) f is not necessarily bounded if E is unbounded
Let E = Q+. Consider1 f(x) = 3x+ 7. Fix ε > 0. Then for δ = ε/3 and x, y ∈ E

|x− y| < δ =⇒ |f(x)− f(y)| = 3|x− y| < 3δ = ε

So f is uniformly continuous. However, f is unbounded. Pick any M ∈ R+. Then we know
∃q ∈ Q+ s.t q > M . Further, M < q < f(q) by construction (x ≥ 0 =⇒ x < f(x)).

8: Let I = [0, 1]. f : I → I continuous =⇒ f(x) = x for some x ∈ I

First note the trivial cases: if f(1) = 1 or f(0) = 0 we are done. Assume neither of those are the
case. Define g : I → [−1, 1] s.t g(x) = f(x)− x. g is continuous because it’s the sum of continuous
functions (f is continuous and we know the identity map is continuous from class). Because
f(x) ≥ 0 and f(0) ̸= 0, g(0) > 0. Further, because f(x) ≤ 1 and f(1) ̸= 1, g(1) < 0. So
g(1) < 0 < g(0). Let c = 0 ∈ (g(1), g(0)). Then by IVT ∃x ∈ (0, 1) s.t g(x) = c = 0. Therefore by
construction, we have proved ∃x ∈ I s.t f(x) = x

1https://people.math.wisc.edu/~robbin/521dir/cont.pdf
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Weekly Homework 9

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: There exists f : [0, 1) → R continuous and surjective

Because our function has to include 0, instead of thinking about a piecewise function, we want some
kind of oscillation that captures all the reals. So we make use of the topologist’s sin curve1 and note

f(x) =
1

1− x
sin

(
1

1− x

)
is both continuous on [0, 1) and has the property f([0, 1)) = R. Continuity is clear, but to offer
some justification for surjectivity, note that we cannot bound f from above or below (and by
continuity+IVT, captures everything else when oscillating across the x-axis) so it captures all of R.

2: With X metric space, f : R → X is continuous on R∗ if lim
x→±∞

f(x) ∈ X

Let f be continuous on R,R∗ and define α = lim
x→∞

f(x) andβ = lim
x→∞

f(x)

(a) If X = R, f is bounded
By the definition of a limit, for each ε > 0 ∃N ∈ R− s.t ∀x < N |f(x)− β| < ε. Therefore
f(x) < ε+β =⇒ |f(x)| < |β|+ ε. So let ε = 1 and define R1 < 0 s.t x < R1 =⇒ |f(x)| < |β|+1.
We can similarly define R2 > 0 s.t x > R2 =⇒ |f(x)| < |α|+ 1. We have now shown that if
x ∈ (−∞, R1) ∪ (R2,∞), then f(x) is bounded. The only cases of R we have not accounted for are
x ∈ [R1, R2]. However, we know continuous functions map compact sets to compact sets, and since
X = R, combining this information means f([R1, R2]) is compact and in R, therefore bounded, so
∃B ∈ R+ s.t x ∈ [R1, R2] =⇒ f(x) < B. Take M = max{|α|+ 1, |β|+ 1, B}. We have now shown
all cases: given x ∈ R, |f(x)| < M . Therefore, f(R) is bounded.

(b) In general, f(R) ∪ {α, β} is compact in X
Let K = f(R)∪ {α, β} and note K ⊆ X. This proof is analogous to the proof in HW #3 problem 4:
constructing a finite subcover for any arbitrary open cover of { 1

n |n ∈ N} ∪ {0}.
Let {Gσ}σ∈A be an open cover of K. Since α ∈ K,∃a ∈ A s.t α ∈ Ga. By Ga open, ∃r > 0
s.t Br(α) ⊆ Ga. Also, since f(x)

∞→ α, given ε > 0, ∃M > 0 s.t ∀M ′ > M dX(α, f(M ′)) < ε. So
if x > M , f(x) ∈ Br(α) ⊆ Ga. We can repeat a similar set of steps for β to show that for
b ∈ A s.t β ∈ Gb, there exists N < 0 s.t if x < N , f(x) ∈ Gb.

1Credit to Sarah for this example. Also, Dr. Stokols clarified a rigorous proof wasn’t needed

1
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Continuous functions map compact sets to compact sets. so f([N,M ]) compact. Because
f([N,M ]) ⊂ K, {Gσ}σ∈A is an open cover for f([N,M ]), and by compactness there exists a finite
set B ⊂ A s.t {Gσ}σ∈B covers f([N,M ]). Recall from above: if x ∈ R but x /∈ [N,M ], we know
f(x) ∈ Ga ∪Gb. Note f(R) = {f(x)|x ∈ [N,M ]} ∪ {f(x)|x ∈ R\[N,M ]}, so we have done the work
to create a finite subcover for f(R) and are done. Explicitly: given any arbitrary open cover for K
({Gα}α∈A), we can find a a finite set C = {a, b} ∪B that yields {Gσ}σ∈C , a finite subcover.

3: If |f(x)− f(y)| ≤ (x− y)2 ∀x, y, then f is constant

Note that (x− y)2 = |x− y|2. Therefore, dividing through by |x− y| yields

|f(x)−f(y)| ≤ (x−y)2 =⇒ 0 ≤
∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x−y| =⇒ 0 ≤ lim
x→y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ lim
x→y

|x−y| = 0

By the squeeze theorem, |f ′(x)| = lim
x→y

∣∣∣f(x)−f(y)
x−y

∣∣∣ = 0. So f is differentiable for all x ∈ R, meaning

we can apply Rudin 5.11 and conclude f is constant on R

4: Suppose f ′(x) > 0 on (a, b)

(a) f is strictly increasing on (a, b)
For d, e ∈ (a, b) (WLOG e > d) f is differentiable (so continuous) on [d, e]. By MVT ∃c ∈ (d, e) s.t

f(e)− f(d) = f ′(c) · (e− d) > 0

since f ′(c), e− d > 0. Thus for d, e ∈ (a, b), f(e) > f(d) if e > d, so f strictly increasing on (a, b)

(b) For g(·) = f−1(·), g is differentiable and g′(f(x)) = (f ′(x))−1 (x ∈ (a, b))
Note that part a shows f is 1-1 because for any d, e ∈ (a, b) s.t d ̸= e, f(d) ̸= f(e), meaning g, the
inverse function of f , is well-defined (implied by Rudin 4.17).

Fix x ∈ (a, b) and define y = f(x) and z ̸= y s.t z ∈ ( lim
α→a+

f(α), lim
β→b−

f(β)). By f continuous on

(a, b), define t ∈ (a, b) s.t f(t) = z. So f(t) ̸= f(x) (z ̸= y). By the continuity of f (Rudin 4.6),
t → x =⇒ z = f(t) → f(x) = y. Therefore, by construction and definition of the inverse

g(f(x))− g(f(t))

f(x)− f(t)
=

(
f(x)− f(t)

x− t

)−1

=⇒ 0 < (f ′(x))−1 = lim
t→x

(
f(x)− f(t)

x− t

)−1

= lim
z→y

g(f(x)− g(f(t))

f(x)− f(t)
= g′(y) = g′(f(x))

Because the first term on the bottom expression is defined, this means g′(f(x)) is defined for all
x ∈ (a, b), meaning g is differentiable and g′(f(x)) = (f ′(x))−1.

2
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5: For g with bounded derivative, f(x) = x+ εg(x) is 1:1 if ε is small enough

From the form of f and the differentiability of g, by Rudin 5.3 we have

f ′(x) = lim
h→0

x+ h− x

h
− εg′(x) = 1− εg′(x)

By boundedness, ∃M > 0 s.t |g′(x)| < M , which means for ε ∈ (0, 1
M )

f ′(x) = 1− εg′(x) ≥ 1− εM > 0

f ′(x) > 0 =⇒ f is 1:1 by the MVT because we know for any a, b ∈ R+ we know ∃c ∈ (a, b) s.t

f(b)− f(a) = f ′(c) · (b− a) ̸= 0

showing f(a) ̸= f(b) for any a ̸= b. So f is 1:1 if ε > 0 is small enough (< M−1).

6: f : R+ → R s.t f ′(x)
∞→ 0. Then g(x) = f(x+ 1)− f(x)

∞→ 0

Fix ε > 0. By f ′(x)
∞→ 0, ∃M > 0 s.t x > M =⇒ |f ′(x)| < ε. Also, by MVT, ∃c ∈ (x, x+ 1) s.t

f(x+ 1)− f(x) = f ′(c) · (x+ 1− x) = f ′(c)

If we take, x > M , then c > M so

|g(x)− 0| = |f(x+ 1)− f(x)| = |f ′(c)| < ε

By the definition of the limit, this implies g(x)
∞→ 0

7: If f ′(x)&g′(x) exists, g′(x) ̸= 0, and f(x) = g(x) = 0 then f ′(x)/g′(x) = lim
t→x

f(t)/g(t)

The relevant derivatives exist and g′(x) ̸= 0 so

f ′(x)

g′(x)
= lim

t→x

f(t)− f(x)

t− x
· t− x

g(t)− g(x)
= lim

t→x

f(t)− f(x)

g(t)− g(x)
= lim

t→x

f(t))

g(t)

since g(x) = f(x) = 0 and using the product rule of limits.

3
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Weekly Homework 10

Paul B.
Math 531: Real Analysis I

April 23, 2022

1: Suppose f is defined in some Br(x) (r > 0) and f ′′(x) exists

(a) Prove f ′′(x) = limh→0 h
−2

(
f(x+ h) + f(x− h)− 2f(x)

)
Let ϕ(h) = f(x+ h) + f(x− h)− 2f(x) and g(h) = h2, where ϕ(·) is only (necessarily) defined if
x± h is in the neighborhood of x s.t f is defined. Then

lim
h→0

ϕ′(h)

g′(h)
= lim

h→0

f ′(x+ h)− f ′(x− h)

2h
= lim

h→0

(
f ′(x+ h)− f ′(x)

2h
+

−f ′(x− h) + f ′(x)

2h

)
= f ′′(x)

since f ′′(x) exists and we can pull out a constant .5 to match its exact definition1. Note that
ϕ(h), g(h)

0→ 0. So by Rudin 5.13 lim
h→0

ϕ(h)
g(h) = lim

h→0

ϕ′(h)
g′(h) = f ′′(x).

(b) Prove the above limit may exist even if f ′′(x) doesn’t
Consider f(x) = 5 if x > 0, 0 if x = 0, and −5 if x < 0. This function is clearly not continuous at 0,
so its second derivative at 0 cannot exist. However, the limit is clearly 0 as h→ 0. This is because
for any h ̸= 0, f(x+ h)− f(x− h) = 0 = f(x). So ∀h ̸= 0, ϕ(h)/h2 = 0 (using notation from the
first part). Considering a formal limit as h→ 0 definition (i.e. |h| < ε), the limit exists and is 0.

2: Let f : (a, b) → R

(a) f is convex iff f ′ monotonic increasing
We will do an iff through the whole proof so one can start at the beginning for assuming convexity
or start at the end for assuming increasing (and it will follow both ways). In order to do this a bit
more cleanly, we will go ahead and get a MVT result. For λ ∈ (0, 1), let c = (1− λ)a+ λb. By the
MVT, ∃x ∈ (a, c) and y ∈ (c, b) s.t

f ′(x) =
f(c)− f(a)

c− a
and f ′(y) =

f(b)− f(c)

b− c

We will refer to these definitions later in proof.
1note that the two terms correspond to limits "from the left" and "from the right" at x, which must be equivalent

since the exists derivative, and therefore this particular limit, exists. This was more or less established in class as well.

1
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Now note that, in general,

f(c) ≤ (1−λ)f(a)+λf(b) ⇐⇒ f(c) ≤ c− b

a− b
f(a)−

(
1− c− b

a− b

)
f(b) ⇐⇒ f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c

since λ = c−b
a−b by construction. Now note, from our previous definitions

f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c
⇐⇒ f ′(x) ≤ f ′(y)

and by construction x < y. Now look what we’ve proven: if you start with
f(c) ≤ (1− λ)f(a) + λf(b) you get x < y =⇒ f ′(x) ≤ f ′(y), and vice versa.These are respectively
the definitions of convexity and monotonic increasing2, so our proof works starting from the
beginning and working forward or starting at the end at working back.

(b) If f ′′(x) exists ∀x ∈ (a, b), f is convex iff f ′′(x) ≥ 0 (x ∈ (a, b))
We proved on the previous HW that f is increasing iff f ′(x) ≥ 0. So by extension, from part a

f is convex ⇐⇒ f ′ is increasing ⇐⇒ f ′′(x) ≥ 0 ∀x ∈ (a, b)

3: f twice differentiable on (a,∞) with M0,M1,M2 the respective sup of |f(x)|, |f ′(x)|, |f ′′(x)|

(a) M2
1 ≤ 4M0M2

First, note that if M0 = 0, then ∄x ∈ (a,∞) s.t f(x) ̸= 0. Therefore, f = 0 on (a,∞), meaning
M1 = 0 so the inequality holds. Now assume M0 ̸= 0.

Per the hint given in Rudin, by Taylor’s Theorem, given h > 0, |f ′(x)| ≤ hM2 +M0h
−1 for any

x ∈ (a,∞). Since this holds for all x, it is an upper bound, and therefore must be greater than or
equal to the least upper bound, yielding M1 ≤ hM2 +M0h

−1 =⇒ M1 ≤ h2M2 + 2M2M0 +M0h
−2

by squaring both sides. Basic algebra shows α2x2 + β2x−2 = 2αβ has the solution x = ±
√
α/β. So

with respect to our problem, letting h =
√
M2/M0 leads to h2M2 +M0h

−2 = 2M2M0. This is a
valid definition for h > 0 as long as M0 ̸= 0, which we have assumed. Therefore selecting this h,
M1 ≤ h2M2 + 2M2M0 +M0h

−2 = 4M0M2.
M0 ≥ 0 by construction, so we’ve shown all cases and the inequality holds.

(b) M0 = 1,M1 = 4,M2 = 4 for f(x) = 2x2 − 1 for x ∈ (−1, 0) and (x2 − 1)(x2 +1)−1 for x ∈ [0,∞)
We will look at each section of the piecewise individually and combine what we know at the end.

If x ∈ (−1, 0): sup |f(x)| = 1 because if a ∈ (0, 1), for x ∈
(
−1,−

√
a+1
2

)
2x2 + 1 > a. From class

f ′(x) = 4x, so sup |f ′(x)| = 4 (a ∈ (0, 4), x ∈ (−1,−a
4 ) =⇒ |4x| > a). Trivially, sup |f ′′(x)| = 4

If x ∈ [0,∞): sup |f(x)| = 1 (a ∈ (0, 1), x ∈
(√

2
1−a ,∞

)
=⇒ f(x) > a). By Rudin 5.3,

f ′(x) = 4x(x2 + 1)−2. On [0, 1], |f ′(x)| ≤ 4·1
(02+1)2

= 2. Otherwise, a ∈ (0, 1), x ∈ (2+
√
4−a2

a ,∞) gives

|f ′(x)| > a. So sup |f ′(x)| ≤ 2. Again by Rudin 5.3, f ′′(x) = 4(1−3x2)
(x2+1)3

. If x ∈ [0, 1), then

|f ′′(x)| ≤ 4(1−3·02)
(02+1)3)

= 4. Otherwise (x ≥ 1), by Rudin 5.13 f ′′(x) = 4
(x2+1)3

+ −12x2

(x2+1)3
→ 0 and

−2 = f ′′(1) ≤ f ′′(x) < 0, so sup |f ′′(x)| ≤ 4

The sup agrees for |f(x)|, |f ′′(x)| and the first sup of |f ′(x)| dominates, so M0 =M2 = 4,M1 = 1.
2This holds for all arbitrary c and consequently x, y ∈ [a, b] (we can also restrict the interval)

2
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4: f : [a, b] → R, n− 1 times diff. Let α, β from 5.15 and Q(t) = f(t)−f(β)
t−β . For t ∈ [a, b], t ̸= β

differentiate f(t)−f(β) = (t−β)Q(t) n-1 times at t = α and show f(β) = P (β)+ Q(n−1)(α)
(n−1)! (β−α)n

By the differentiability of f , Q(t) is differentiable at α ̸= β by Rudin 5.3. So differentiating both
sides of f(α)− f(β) = (α− β)Q(α)

f ′(α) = −(β − α)Q′(t) +Q(t)

Differentiating further yields

f ′′(α) = −(β − α)Q′′(t) + 2Q′(t) =⇒ · · · =⇒ f (k)(α) = −(β − α)Q(k)(α) + kQ(k−1)(α)

for k ≤ n− 1. Multiplying by (β−α)k

k!

(β − α)k

k!
= −(β − α)k+1Q(k)(α)

k!
+

(β − α)kQ(k−1)(α)

(k − 1)!

The right hand side partial sums has a pattern: for Sn =
∑n

k=1
(β−α)k

(k−1)!

(
Q(k−1)(α)− (β−α)Q(k)(α)

k

)
S2 =

(β − α)1Q(1)(α)

1!
− (β − α)3Q(2)(α)

2!
=⇒ · · · =⇒ Sn−1 = −

(
f(α)−f(β)+(β − α)nQ(n)(α)

n!

)
by the definition of Q(α). So taking

∑n−1
k=1 of both sides of the original equality leads to

(n−1)∑
k=0

(β − α)kf (k)(α)

k!
= ψ(n− 1) =⇒ f(β) =

(n−1)∑
k=0

(β − α)kf (k)(α)

k!
+

(β − α)nQ(n)(α)

n!

where we moved f(α) to the left hand side from ψ(n− 1) to complete the definition of P (β).

5: f diff on [a, b], f(a) = 0,∃A ∈ R s.t |f ′(x)| ≤ A|f(x)|. ∀x ∈ [a, b], f(x) = 0

Let M0 = sup |f(x)|,M1 = sup |f ′(x)|. First note that from work we did in #3a we know that
|f ′(x)| ≤ A|f(x) ∀x ∈ [a, b] =⇒ M1 ≤ AM0. We will first rigorously prove the hint given by Rudin
and then show the implication when combined with the continuity of f (implied by differentiability).

For some r > 0, Ar = 1. So fix x0 ∈ (a, b] s.t x0 < r + a, so A(x0 − a) < 1. For x ∈ [a, x0], by the
MVT ∃c ∈ (a, x) s.t |f(x)| = |f(x)− f(a)| ≤ |f ′(c)(x− a)| ≤ |f ′(c)|(x0 − a). Since |f ′(c)| ≤M1

(∀c ∈ [a, b]) and M1 ≤ AM0, we have |f(x)| ≤ AM0(x0 − a). Equivalently, by our assumption, for
some α ∈ (0, 1) |f(x)| ≤ αM0 < M0 ∀x ∈ [a, x0]. Because M0 is a least upper bound, this implies
that |f(x)| (and therefore f(x)) is exactly 0 on [a, x0] (otherwise we would arrive at an immediate
contradiction: αM0 would be a smaller upper bound).

Per our previous definition, now let z = r + a. For a contradiction, assume f(z) ̸= 0. The
implication of the work we’ve done is that f is exactly 0 on [a, z) (if we pick any x0 ∈ (a, z), f = 0
on [a, x0]). Fix ε = .5|f(z)|. By the continuity of f , for x0 ∈ (a, z) ∃δ > 0 s.t

|z − x0| < δ =⇒ |f(z)− f(x0)| = |f(z)| < ε = .5|f(z)|

3
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To be clear3: this violation of continuity occurs because any x0 ∈ (a, z), no matter how small
|z − x0| is, will have the property f(x0) = 0. So we have our contradiction. We have now expanded
the interval where f = 0 and can keep applying the same argument to show that if we assume that
∃h > 0 s.t f(z + h) = 0, we will arrive at a contradiction. Thus, f = 0.

6: ϕ : [a, b]× [α, β] → R. A solution is f diff on [a, b] s.t f(a) = y(a) = c ∈ [α, β], f(x) ∈ [α, β],
and f ′(x) = ϕ(x, f(x)). Max one solution if ∃A ∈ R s.t for (x, y1), (x, y2) ∈ R,
|ϕ(x, y2)− ϕ(x, y1)| ≤ A|y2 − y1|

We WTS that given this condition, for any solutions f and g, f = g. So let f and g be two solutions
and , per the hint, define d(x) as the difference between f and g at x. We will show d(x) = 0 ∀x.
It is also important to be careful about the notation here. What we have is an ordinary differential
equation problem. So as an abstraction, consider the example given in the hint of √y. We have
ODE(y)=y′ −√

y. We are looking for a solution f s.t ODE(f(x))=0. So substituting
y′ = ϕ(x, f(x)) and noting d is differentiable by the differentiability of solutions and Rudin 5.3

|d′(x)| = |f ′(x)− g′(x)| = |ϕ(x, f(x))− ϕ(x, g(x))| ≤ A|f ′(x)− g′(x)| = A|d(x)|

where we used substitution and the inequality given in the problem. We are also given that
f(a) = g(a) = c since they’re solutions, so d(a) = 0. Thus by #5, d(x) = 0 ∀x ∈ [a, b]

3This is similar to what we saw in #1 b
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Weekly Homework 11

Paul B.
Math 531: Real Analysis I

April 28, 2022

1: (Bounded Variation - BV properties)

(a) Any Lipschitz continuous function is BV
Let1 f : [a, b] → R Lipschitz continuous. Then ∃M ∈ R s.t |f(x)− f(y)| ≤ M |x− y| (∀x, y ∈ X).
Let P = {a = x0 < x1 < · · · < xn−1 < xn = b} be a generic partition of [a, b]. Then by definition

TV (f) = sup
P

n∑
i=1

|f(xi)− f(xi−1)| ≤ sup
P

n∑
i=1

M |xi − xi−1| = M · TV (id(x)) = M(b− a)

By the monotonicity of id(x) = x. TV (f) ∈ [0,M(b− a)], so f Lipschitz continuous are BV.

(b) Any BV function is bounded.
Given f : [a, b] → R and P the aforementioned generic partition, for x ∈ [a, b] and some M ∈ R

|f(x)− f(a)| ≤ sup
P

n∑
i=1

|f(xi)− f(x[i− 1])| < M

since we are taking the supremum over all possible partitions, so we could consider any x in such a
partition to have a guaranteed upper bound. Therefore by the triangle inequality

|f(x)| = |f(x)− f(a) + f(a)| ≤ |f(a)|+ |f(x)− f(a)| ≤ |f(a)|+ sup
P

n∑
i=1

|f(xi)− f(xi−1)|

Because f(a) ∈ R by assumption, |f(x)| < M + |f(a)| < ∞ (∀x), so f is bounded.

(c) For d(f, g) = TV (f − g), BV ([a, b], d), set of all BV functions [a, b] → R, isn’t a metric space
Take f(x) = c for c ∈ R\0 and g(x) = 0 (∀x). They have "no variation" (f, g ∈ BV ([a, b], d)). But

d(f, g) = TV (f − g) = TV (c) = 0

Metrics must follow d(f, g) = 0 ⇐⇒ f = g. However, f ̸= g, so BV ([a, b], d) isn’t a metric space

1Credit to Marc for this proof strategy

1
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2: Let f, α : [a, b] → R with α = a+ − α− s.t α+, α− monotone increasing (so α is BV).
Recall that R(α) = R(α+) ∩R(α−) and

∫
fdα =

∫
fdα+ −

∫
fdα−.

(a) If f ∈ R(α), |
∫
fdα| ≤ [supx∈[a,b] |f(x)|] · TV (α)

By f ∈ R(α) and α BV,
∫
fdα ≤ U(f, P, α) (any P ). Therefore∣∣∣∣∫ fdα

∣∣∣∣ ≤ |U(f, P, α)| =

∣∣∣∣∣
n∑

i=1

Mi∆αi

∣∣∣∣∣ ≤ [ sup
x∈[a,b]

|f(x)|]
n∑

i=1

|αi − αi−1| ≤ [ sup
x∈[a,b]

|f(x)|] · TV (α)

since B ⊆ A =⇒ supB f(x) ≤ supA f(x).

(b) Define α = α+ + α− increasing. R(α) = R(α) and for f ≥ 0 |
∫
fdα| ≤

∫
fdα

We know that R(α) = R(α+) ∩R(α−) and
∫
fdα =

∫
fdα+ −

∫
fdα−. Trivially note that if

f ∈ R(α+) ∩R(α−), then f ∈ R(α+),R(α−). Therefore by Rudin 6.12e f ∈ R(α+ + α−) = R(α).
If we instead assume f ∈ R(α+ + α−), then

∫
fdα =

∫
fdα+ +

∫
fdα−. This implies that both of

those objects exist, so f ∈ R(α−),R(α+) thus f ∈ R(α). Combining cases R(α) = R(α)
Finally, by 6.12 ∫

fd(α) =

∫
fd(α+) +

∫
fd(α−)

=⇒
∣∣∣∣∫ fdα

∣∣∣∣ = ∣∣∣∣∫ fdα+ −
∫

fdα

∣∣∣∣ ≤ ∣∣∣∣∫ fdα+

∣∣∣∣− ∣∣∣∣∫ fdα

∣∣∣∣
using the above definitions, the triangle inequality, and f ≥ 0 (w/ α+, α− increasing).

3: A set E ⊆ R is measure 0 if for each ε > 0∃ a finite set of open balls s.t E ⊆ ∪n
i=1Bδi(pi) and∑n

i=1 δi < ε. f : [a, b] → R is continuous almost everywhere if its set of discontinuities is measure 0

(a) Any bounded function that is continuous almost everywhere is in R
We follow the proof of 6.10 (similar result) but use more notation to make some steps more rigorous.

Fix ε > 0. Let σ = ε
2(b−a) , a valid construction since a, b are fixed. Because f is bounded, note that

for L = sup |f(x)| ∈ R+ and2 any [xi−1, xi] ⊂ [a, b], Mi −mi < 2L. So let ε′ = min{ ε
2 ,

ε
4L}.

By the measure 0 property, there exists {δi}ni=1, {pi}ni=1 (fixed n ∈ N) s.t for the set (E) of all
discontinuities of f , E ⊆ ∪n

i=1Bδi(pi) with
∑n

i=1 δi < ε′. So by extension, we can cover E by finitely
many disjoint, closed intervals {Ij}nj=1 s.t [uj , vj ] = Ij (uj , vj ∈ [a, b]) and

∑n
j=−1 vj − uj < ε′. Per

Rudin, we will keep track as the endpoints of these intervals as the primary objects of interest.

Each interval (uj , vj) is open in [a, b]. So the compliment of the union of these intervals with respect
to [a, b] is closed. Therefore, A = [a, b]\ ∪n

j=1 (uj , vj) is closed thus compact since its bounded. So
since f is continuous on A (compact), its also uniformly continuous on A. Therefore,
∃δ > 0 s.t for |s− t| < δ (s, t ∈ A), |f(s)− f(t)| < σ. This implies given xi−1, xi ∈ A s.t ∆xi < δ,
Mi −mi ≤ σ. To see this, note that since σ is independent (not affected by the infimum)

|f(s)− f(t)| < σ =⇒ f(t)− σ < f(s) < f(t) + σ =⇒ inf
t∈Bδ(s)

f(t)− σ ≤ f(s) < inf
t∈Bδ(s)

f(t) + σ

2We use the standard Rudin definition of Mi,mi here and for the rest of the assignment

2
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because otherwise inf
Bδ(s)

f(t) isn’t a greatest lower bound; we can show a similar result for sup
s∈Bδ(t)

f(s).

Now form a partition P = {a = x0 < x1, · · · < xN = b} of [a, b] s.t each uj , vj ∈ P , given
j, i s.t xi−1 = uj , xi = vj , P ∩ (uj , vj) = ∅ (∀j), and if xi−1 is not uj (∀j) then ∆xi < δ. Let
U = {uj}ni=1. So note that {xi ∈ P |xi /∈ U} can be expressed as a finite collection {yi}Mi=1, and the
sum

∑M
i=1∆yi telescopes to something positive but bounded by b− a. Now we have

N∑
i=1

(Mi−mi)∆xi =
∑

xi−1 /∈U

(Mi−mi)∆xi+
∑

xi−1∈U
(Mi−mi)(∆xi) ≤ σ

M∑
i=1

∆yi+2L
∑

xi−1∈U
(∆xi) ≤ ε

since
∑

xi−1∈U
(∆xi) =

∑n
j=−1 vj − uj < ε′. U(P, f)− L(P, f) =

∑N
i=1(Mi −mi)∆xi, so f ∈ R

(b)The same is not true for R(α) with α increasing, but is for α continuously differentiable
For α monotonic, the part we want to exploit, to get a contradiction, that is different from the proof
of part a is

∑
xi−1∈U

(∆xi). We can make a construction
∑

xi−1∈U
(∆αi) is extremely large because of a

"fat tail"; our only requirement is that its increasing. Because we could have countably infinite
discontinuities, this blows up the term. An explicit counter-example: consider α(x) = .5

(
1 + sgn(x)

)
with f discontinuous at 0. No matter how small we shrink the distance between x, the difference in
α about 0 will be 1, and the discontinuity will blow the sums up. For α continuously differentiable,
note that implicitly we assume α is also monotonic from the definitions in class, so we invoke 6.17.
If this is over-assuming (for monotonicity), then note the Jordan Decomposition, which uses
monotonic α-type objects as inputs, which still gives us what we want.

4: α incr on [a, b], α cts at x0 ∈ [a, b], f(x0) = 1,&f(x) = 0 if x ̸= x0. f ∈ R(α),
∫
fdα = 0.

Fix ε > 0. By the continuity of α, pick δ > 0 s.t |x0 − x| < δ =⇒ |α(x0)− α(x)|. Therefore, we
know that a partition P = {a = p0 < p1 < · · · < pn = b} s.t δpi < .5δ is well-defined. We know for
some j, x0 ∈ [pj−1, pj+1]. Further, that a sup of f(x) over any interval that contains x0 will be 1
and otherwise will be 0 (by assumption). For each i, pick ti ∈ [pi−1, pi], so that {ti}ni=1 with P
yields a tagged partition. Therefore (the LHS gives us the definition of R(α) and

∫
fdα)∣∣∣∣∣

n∑
i=1

f(ti)∆αi

∣∣∣∣∣ ≤ |f(tj)|(α(tj)− α(tj−1)) + |f(tj+1)|(α(tj+1)− α(tj)) ≤ α(tj+1 − α(tj−1) < ε

5: f ≥ 0, f its on [a, b], and
∫ b
a f(x)dc = 0. f(x) = 0 ∀x ∈ [a, b]

Assume, for a contradiction, that ∃x0 ∈ [a, b] s.t f(x0) > 0. Because f is continuous, we know from
HW10 # 5 that there must exists an interval that f is non-zero on (i.e there must be infinitely
many points where f(x) > 0), otherwise we will arrive at a contradiction. Therefore, for each ε > 0,
∃δ > 0 s.t for |x− x0| < δ (x ∈ [a, b]), |f(x)− f(x0)| < ε and |f(x)| > 0. Now consider some
δ0 ∈ (0, δ). It follows that f is non-zero on [x0 − δ0, x0 + δ0], and because this interval is closed, the
inf of f over this interval is also non-zero. Thus, for P = {a, x0 − δ0, x0 + δ0, b} a partition of [a, b],
L(P, f) > 0 because m2 > 0 by construction. So

∫ b
a f(x) ≥ L(P, f) > 0, contradiction.

3
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6: Define functions β1, β2, β3 s.t β1(0) = 0, β2(0), β3(0) = .5, βj(x) = 1 if x > 0 and βj = 0
otherwise. f bounded on [−1, 1]

Credit to Marc for the notation and partition construction for the whole problem

(a) f ∈ R(β1) iff f(0+) = f(0).
∫
fdβ1 = f(0)

If f(0+) = f(0), construct P = {x0 = −1 < x1 = 0 < x2 < x3 = 1} a partition of [−1, 1]
(x2 ∈ [0, 1], otherwise fixed). Now let M = sup

x∈[x2,x3]
f(x) andm = inf

x∈[x2,x3]
f(x). β1 will only be

non-zero on the (0, 1) interval (and will more precisely be one), so [U − L](P, f, β1) = M −m
because there is only one such interval in our partition. By f(0+) = f(0), as x → 0+, M,m → 0, so
f ∈ R(β1) and the integral is exactly f(0).

Fix ε > 0. If f ∈ R(β1), we know there exists P = {x0 < x1 < · · · < xn}, a partition of
[−1, 1] s.t [U − L](P, f, β1) < ε. For some j, 0 ∈ [xj−1, xj ]. By the properties established in the
other direction, [U − L](P, f, β) = Mj −mj < ε. Now choose δ > 0 s.t Bδ(0) ⊆ [xj−1, xj ]. Then
|f(x)− f(0) ≤ Mj −mj < ε for x ∈ Bδ(0) ∩R+. Therefore by definition, f(0+) = lim

x→0+
f(x) = f(0)

because our choice of δ can be arbitrarily small. So we once again have that the relevant integral is
exactly f(0) by definition

In both cases, we saw that
∫
fdβ1 = f(0) because the difference between lower/upper sums is

arbitrarily small, but the upper/lower sums themselves are f(0)

(b) a) holds for β2
For this part, we will slightly modify the definitions and then rely upon the rigor we used in part a.
Use instead P = {x0 = −1 < x1 < x2 = 0 < x3 = 1} a partition of [−1, 1], using
M = sup

x∈[x1,x2]
f(x) andm = inf

x∈[x1,x2]
f(x). The only difference between a and b for this part now

(other than WLOG-type notational changes, like using R− instead) is that we have β2 → 1 (instead
of β1 = 1). So we just replace the equalities (where necessary) in the corresponding direction in part
a with limits, and then from arguments we’ve done to death in previous homeworks this means that
the upper and lower sums are converging to f(0) as x → 0− for the first direction, and for the
second we still have a shrinking radius that will lead to f(0).

(c) f ∈ R(β3) iff f its at 0
From the above to cases, it follows that the difference of the upper and lower sums is
.5(Mj +Mj−1 −mj −mj−1) for some j. Then we can construct a partition that bounds this
difference by .5ε and for any arbitrary δ > 0, 0 ∈ [xj−1, xj+1] with xj+1 − xj−1 < δ. Then we can
use the fact that Mj +Mj−1 −mj −mj−1) < ε to bound |f(x)− f(0)|, which gives continuity by
definition. Analagous argumentation to the previous parts shows that ∈ fdβ3 = f(0)

(d) f its at 0 =⇒
∫
fdβ1 =

∫
fdβ2 =

∫
fdβ3 = f(0)

This is simply a combination of the parts above

4
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7: f : (0, 1] → R and f ∈ R on [c, 1] (c > 0). Let
∫ 1
0 f(x)dx = lim

c→0

∫ 1
c f(x)dx if limit is finite

(a) f ∈ R on [0, 1], integral definitions agree
By Rudin 6.20, because f ∈ R on [a, b], limc→0

∫ c
0 f(x)dx = limc→0 F (c) = 0 by the continuity of

F (·). With clarification from Dr. Stokols, we can write lim a− b = lim a− lim b so long as each limit
exists. Therefore by Rudin 6.12c

lim
c→0

∫ 1

c
f(x)dx = lim

c→0

∫ 1

0
f(x)dx− lim

c→0

∫ c

0
f(x)dx =

∫ 1

0
f(x)dx

(b) Construct an f s.t the limit exists, but doesn’t for |f |

Consider, fom HW9 # 1, f(x) = sin(1/x)/x. Let u = 1/x (du = x−2dx, so dx = u−2du). Then∫ 1

a
f(x)dx =

∫ c

1
u sin(u)u−2du =

∫ c

1
sin(u)u−1du

We make a change to the integration bounds because, analogous to part a, we want to consider a
situation where the lower (integrating) bound is approaching 0 for f(x), so then for f(1/x) we
consider an upper bound approaching ∞ (we will make the limiting arguments more precise at the
end). Thus by Rudin 6.22 (with F = u−1 and g = sin(u))∫ c

1
sin(u)u−1du =

− cos(u)

u

∣∣∣∣c
1

−
∫ c

1

−cos(u)

u2
du

Notice that −u−1 ≤ − cos(u)
u ≤ u−1 and |

∫ c
1

−cos(u)
u2 du| ≤

∫ c
1

1
u2 = −1

u

∣∣∣∣c
1

. So as c → ∞,

− cos(u)
u

∣∣∣∣c
1

−
∫ c
1

−cos(u)
u2 du → r ∈ R by the squeeze theorem. Now, putting this all together

lim
a→0

f(x)dx = lim
c→∞

∫ c

1
sin(u)u−1du = lim

c→∞

− cos(u)

u

∣∣∣∣c
1

−
∫ c

1

−cos(u)

u2
du → r

However, the same clearly does not hold for |f |. We have essentially established in class why this
does not hold but we also offer the following. Consider an interval arbitrarily close to 0 and
arbitrarily small. More precisely, ∃δ > 0 s.t ∀δ′ ∈ (0, δ), |f(x)| cannot be bounded from above (on
(x− δ′, x+ δ′) but its inf will always be 0 because the function is oscillating so quickly. In other
words, Mi −mi will always take the form ∞− 0 no matter how small we make δ′. Therefore,
|f | /∈ R.
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Weekly Homework 12

Paul B.
Math 531: Real Analysis I

April 28, 2022

1: Let fn be functions in F([a, b],R) and suppose fn → f

[f ]Lip is the smallest positive constant C such that f is Lipschitz continuous (with C). Criticically
for part a), this implies if ∃C s.t |f(x)− f(y)| ≤ C|x− y| (x ̸= y), then [f ]Lip ≤ C

(a) [f ]Lip ≤ supn[fn]Lip
If supn[fn]Lip = ∞, the inequality holds trivially (nothing can be > ∞). So assume supn[fn]Lip ̸= ∞.
So all fn are Lipschitz and ∃C ∈ R+ s.t |fn(x)− fn(y)| ≤ C|x− y| ∀n andx, y ∈ [a, b] (x ̸= y).

Fix ε > 0 and let x, y ∈ [a, b]. By fn → f , ∃N1 s.t ∀n > N1|f(x)− fn(x)| < ε. Also,
∃N2 s.t ∀n > N2|f(y)− fn(y)| < ε. Take N = max{N1, N2}. Then by the triangle inequality

|f(x)−f(y)| ≤ |f(x)−fn(x)|+|f(y)−fn(y)|+|fn(x)−fn(y)| < 2ε+sup
n

|fn(x)−fn(y)| = 2ε+C ·|x−y|

for all n > N . Because a strict equality holds for all ε and ε is arbitrary,from past HW we know we
can take out ε and use a weak inequality, yielding |f(x)− f(y)| ≤ C|x− y|, so [f ]Lip ≤ supn[fn]Lip.

(b) Construct fn → f s.t supn sup(a,b) |f ′
n(x)| < ∞ but f not differentiable

Consider1 fn(x) =
√
x2 + n−1. Because of results we’ve shown on past howeworks, it should be

clear that fn(x) →
√
x2 = |x|, which is not differentiable at 0.

To complete the proof, we will show supn sup(−2,2) |f ′
n(x)| = 1. f ′

n(x) =
x√

x2+n−1
. First we will

show: on [−2, 2], fn(x) ∈ [−1, 1]∀n. One might have a concern of what happens at/near 0, but the
behavior is normal even in the limit. To see this, fix n and let ε ∈ ( 1

2n ,
1
n) (so clearly ε → 0). We

can comfortably bound f ′
n(ε) (similar arguments for f ′

n(−ε) also) above and below by

0 <
1

2
√
n
<

1
2n√

n−2 + n−1
<

ε√
ε2 + n−1

< f ′
n(ε) <

n−1

√
ε2 + n−1

<
√
n−1 ≤ 1

Further, x → 1, n → ∞ =⇒ f ′
n(x) → 1 and x → −1, n → ∞ =⇒ f ′

n(x) → −1 (clear from the
form of f ′

n(x)). Further, f ′
n(x) is an increasing function on R (this is also clear, consider Rudin

5.13). So we have proved that fn(x) ∈ [−1, 1] for x ∈ [−2, 2] and for all n, and that
supn sup(−2,2) f

′
n = − infn inf(−2,2) f

′
n = 1.

So supn sup(−2,2) |f ′
n(x)| = 1, but fn → f not differentiable at 0.

1From Real Mathematical Analysis by Pew, p. 220. Also, Dr. Stokols said f just has to not be diff at one point
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2: For (fn) bounded s.t fn →→ f , (fn) are uniformly bounded

Since2 fn →→ f , ∃N s.t ∀n > N |fn(x)− f(x)| < 1 (∀x). So |fn(x)| ≤ |f(x)|+ 1. Since each fn
bounded, given n, ∃Mn ∈ R s.t |fn(x)| ≤ Mn (∀x). Thus f is bounded; define M0 s.t |f(x)| < M0.
Recall the previous N . Let M = max{M1, . . . ,MN ,M0 + 1}. Then |fn(x)| < M ∀x, n.

3: Consider fn, gn →→ f, g on E ⊂ R

(a) fn + gn →→ f + g on E
Fix ε > 0. By fn →→ f, gn →→ g, (using the shortcut established in #1) ∃N s.t ∀n > N

|fn(x)− f(x)| < .5ε and |gn(x)− g(x)| < .5ε

for any x. By the triangle inequality

=⇒ |[fn + gn](x)− [f + g](x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε

(b) For fn, gn bounded, fn · gn →→ f · g on E

By #2, fn, gn are uniformly bounded. So ∃M s.t |fn(x)|, |gn(x)| ≤ M for any n, x. Also from work
we did for #2, we similarly have |f(x)|, |g(x)| ≤ M . Then by the triangle inequality

|[fn·gn](x)−[f ·g](x)| = |[fn·gn](x)−[gn·f ](x)+[gn·f ](x)−[f ·g](x)| ≤ |gn(x)||fn(x)−f(x)|+|f(x)||gn(x)−g(x)|

Fix ε > 0. Using the above result and |gn|, |f | < M , per part a) ∃N s.t ∀n > N and any x

|fn(x)− f(x)| < ε

2M
and |gn(x)− g(x)| < ε

2M
=⇒ |[fn · gn](x)− [f · g](x)| < ε

4: Consider fn, gn →→ f, g on R, but fn · gn ̸→→ f · g

Let3 fn(x) = gn(x) = x2 + n−1 and f(x) = g(x) = x2. If we fix ε = N−1 (any N ∈ N) then for
n > N

|fn(x)− f(x)| = |gn(x)− g(x)| = |n−1| < ε

for any x. So clearly, fn, gn converge using a definition of N that does not depend on x, meaning
fn, gn →→ f, g. However

[fn · gn](x) = (x+ n−1)2 = x2 + 2xn−1 + n−2 =⇒ |[fn · gn](x)− [f · g](x)| = |2xn−1 + n−2|

For x fixed, |2xn−1 + n−2| → 0, so fn · gn → f · g pointwise. However, how large this term is
depends on the value of x, and there is no way to eliminate the x because the problem is as
simplified as it can get. So per examples in class, there is no way to fix N solely based on ε,
therefore there is no uniform convergence. Here’s a bit more of a formal argument to that end in
case one feels it is necessary. Take Nε (N fixed soley based on ε). Then for n > Nε, we can simply
consider |2x| > n and |2xn−1 + n−2| > 1, so will not be less than an arbitrary ε.

2For this whole HW, "for any" or "∀" x means for any x ∈ R (per Dr. Stokols). Also →→ denotes uniform convergence
3Credit to Angel for this counterexample
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5: Consider f(x) =
∑

(1 + n2x)−1

Define4 fn(x) =
1

1+n2x

(a) For what values does the series converge absolutely
At x = 0, the series (

∑
1) diverges. But if we fix x > 0, 0 <

∑ 1
1+n2x

<
∑ 1

n2x
converges by the

comparison test. Now consider x < 0. We cannot construct the same bound because if x = 1
n2 for

some n ∈ N then we have a 0 in the denominator for the nth term in the series, so the series itself is
undefined. However, if no such n exists we have a similar limit comparison test argument of
−∞ <

∑ 1
n2x

<
∑ 1

1+n2x
< 0. Therefore, define the set C = {0} ∪ {x ∈ R| ∃n ∈ N s.t x = 1

n2 }.
Then we have shown if x ∈ R\C, the series converges absolutely.

(b) For what values does the series converge uniformly
Trivially, 1 + xn2 is increasing in x, so 1

1+xn2 is decreasing in x. Thus, fix c > 0. Then we have
sup
(c,∞)

|fn(x)| = 1
1+cn2 . So by part a),

∑
sup
(c,∞)

|fn(x)| converges. So for x ∈ (c,∞) (recall c is an

arbitrary positive number), fn(x) ≤ sup
(c,∞)

|fn(x)| and by Rudin 7.10
∑

fn(x) converges uniformly.

We have a similar result (of uniform convergence by 7.10) for c < 0 and
∑

sup
(−∞,c)

|fn(x)|, with the

caveat we established in part a). Thus,
∑

fn(x) converges uniformly if x ∈ R\C (doesn’t if x ∈ C).

(c) Is f continuous wherever the series converges
Given x ∈ R\C, we have shown in class and on analogous HW problems that fn(x) is continuous.
Therefore,

∑
fn(x) is a sum of continuous functions and is thus continuous. We have also showed

that
∑

fn(x) →→ f(x), so by Rudin 7.12 f is continuous on R\C, the set where the series converges.

(d) Is f bounded
f is not bounded on R. For instance, take our example of x = 0 from part a), which is unbounded.

6: For I(x) = 0 if x ≤ 0 and 1 otherwise, if (xn) ∈ (a, b) distinct sequence and
∑

|cn| converges,
Sn(x) =

∑n
i=1 ciI(x− xn) converges uniformly, and f is continuous for all xn ̸= x

Note the definition of the partial sums, Sn(x), above (per conversation with Dr. Stokols). Further
|Sn(x)| = |

∑n
i=1 ciI(x− xn)| ≤

∑n
i=1 |cn| · 1, and the partials sums of

∑
|cn| converge since its a

convergent series. Therefore, we can apply Rudin 7.10 and say Sn converges uniformly. Further, by
a property of a convergent sums it converges to a constant (for each x not equal to a distinct
sequence term), so f(x) ∈ R and is thus continuous. Here is some more detail: because we assume
that (xn) distinct sequence terms and x ̸= x, Sn is continuous. To see why, consider that I(x− xn)
will never be 0, so given x ∈ R ∃y ∈ R s.t |x− y| < δ (δ arbitrarily small) and y ̸= xn
=⇒ I(x− xn) = I(y − xn). This means Sn continuous, so apply Rudin 7.12 to see that since we
established also Sn

→→ f , f must be continuous.

4Note
∑

xn denotes an infinite sum, per Rudin. Credit to Marc for the construction of C.
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Weekly Homework 13

Paul B.
Math 531: Real Analysis I

April 28, 2022

1: Given I = [−A,A] ⊆ R, there is a sequence of polynomials that converge uniformly to |x| on I

For clarity of what we are trying to prove, we must show that given x ∈ I, there exists
Pn(x) = a0 + a1x+ · · ·+ anx

n s.t ai ∈ R (∀i) andPn
→→ |x|. We will do this by first showing a

general uniform convergence result, then showing that ex →→

∑
xn/n! and

∫
erf(x/δ) →→

∫
sgn(x)

(δ → 0), with lots of substeps. Finally, note Dr. Stokols misspecified the constants a bit in the
writeup of the problem, and I will be using C = .5

√
π in relevant places to remedy this.

First, note the following property of uniform convergence I confirmed with Dr. Stokols in office
hours. Assume that

∑N
n=1 fn

→→

∑
fn (N → ∞). Then

∑∫
fn = lim

N

N∑
n=1

∫
fn = lim

N

∫ ( N∑
n=1

fn

)
=

∫ ∑
fn (1)

We will use that uniform convergence implies
∑∫

fn =
∫ ∑

fn twice in this proof.

For [−R,R] ⊆ R,
∑

Rn/n! converges (ratio test - lim sup an+1/an = lim supR/(n+ 1) = 0).
Further, given z ∈ [−R,R], |zn/n!| ≤ Rn/n!. So by Rudin 7.10

∑
zn/n! converges uniformly. This

is the Taylor series for ez, so
∑

zn/n! →→ ez. By definition and (1) above

C · erf(z) =
∫ z

0
e−t2dt =

∫ z

0

(∑ (−1)nt2n

n!

)
dt =

∑ (−1)nt2n+1

(2n+ 1)n!

∣∣∣∣∣
z

0

=
∑ (−1)nz2n+1

(2n+ 1)n!

So now we have shown that if we fix a closed interval in R, we can show uniform convergence. We
will exploit this fact by creating intervals that correspond to an input that is going towards ∞
(which guarantees both that the interval is large enough and that we still have uniform convergence).
Fix ε > 0. We will think of this as how "good" we want our approximation to be. Now consider a
sequence (δk) → 0 s.t δk > 0 (∀k). Further, fix x ∈ I = [−A,A], our given interval. Then define
Ak ∈ R+ s.t x/δk ∈ [−Ak, Ak]. Now we have done the work to invoke the uniform convergence
argument above and say that for ∃N1

k s.t | erf(z)−
∑N1

k
n=0

(−1)nz2n+1

(2n+1)n! | < ε
4 for any z ∈ [−Ak, Ak].

Note that this argument still holds if we replace N1
k with any M > N1

k . Now as k → ∞
(equivalently as δk → 0), we are given that C · erf(x/δk) → C · sgn(x). Therefore, given ε and δk,
∃N2

k s.t ∀i > N2
k | erf(x/δk)− sgn(x)| < ε

4 . This implies that for Nk = N1
k +N2

k , by the triangle

inequality arguments we’ve used throughout this semester
∣∣∣∑Nk

n=0
(−1)n(t/δk)

2n+1

(2n+1)n! − sgn(t)
∣∣∣ < .5ε.

1
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The problem is the previous argument (with N2
k ) is that we don’t have uniform convergence. We

need the uniform convergence of certain integrals. We will achieve this by showing convergence over
the entire interval using Darboux sums, giving us a bound to once again invoke the M-test. Let
fNk

(x) =
∑Nk

n=0
(−1)n(x/δk)

2n+1

C(2n+1)n! − sgn(x). We WTS

(as k → ∞)

∫ x

0
erf(t/δk)dt−

∫ x

0
sgn(t)dt =

∫ x

0

(
erf(t/δk)− sgn(t)

)
dt →→ 0

Or equivalently by uniform convergence established for erf

(as k → ∞)

∫ x

0
fNk

(t)dt =

∫ x

0

(
Nk∑
n=0

(−1)n(t/δk)
2n+1

C(2n+ 1)n!
− sgn(t)

)
dt =

∫ x

0

Nk∑
n=0

(−1)n(t/δk)
2n+1

C(2n+ 1)n!
dt−

∫ x

0
sgn(t)dt →→ 0

Note that erf(x) ≤ sgn(x) for x > 0, and likewise fNk
(x) ≤ 0 since the partial sum approximation is

bounded by erf(x) from above. Further, the difference between erf(x) and sgn(x) → 1 as x → 0, so
because these functions are symmetric (and fNk

(x) ≥ 0 for x < 0 by similar arguments above), this
implies that fNk

(x) → −.5 for x → 0+ and fNk(x) → .5 as x → 0−. We will use this fact when
making sense of the upper/lower sums, noticing implicitly from the triangle inequality argument
that as k increases our approximation becomes better. WLOG take x > 0 and recall the usual
mi = infx∈[xi−1,xi] fNk

(x) notation for Darboux sums (same for Mi). By the previous convergence
argument and the properties of fNk

(x) for x > 0, there exists a K s.t ∀k > K (which generates a
Nk making our partial sums an arbitrarily good approximation of sgn(x)) we can create a partition
of the interval [0, A] will yield m1 = −.5 and −.5ε < mi ≤ 0 for all i > 1. Again, because we can
make our approximation arbitrarily good by taking i large (shrinking δk), this also means the ∆i

needed to make such a partition will also be shrinking. Thus, the aforementioned partition would
have the property that −.5ε < Mi ≤ 0 (i ∈ N) since fNk

→ 0 quickly for large k (our partial sums
are becoming arbitrarily close to sgn(x)). Now we have established the relevant properties to make
a well-defined construction of a partition that gives us the results that we want. Define a partition
of [0, A] Pk = {x0 = 0 < x1 < · · · < xnk

= A} such that m1 = −.5 and |M1|, |mi|, |Mi|, < .5ε for all
i > 1 and has uniform distance between partition points (i.e. for some ak ∈ R+, a sharp1 constant,
∆i = ai ∀i). Now notice from how we have defined this partition, as k grows, and thus δk shrinks,
the number of partition points (nk) grows, so the partition becomes finer and the uniform distance
between partition points shrinks (in other words ak → 0). Therefore we have

[U−L](fNk
, Pk) =

nk∑
i=1

(Mi−mi)∆i = (M1−m1)ak+

nk∑
i=2

(Mi−mi)∆i < .5ak+ε
n∑

k=2

∆i < .5ak+ε ·A

Thus [U − L](fNk
, Pk) → Aε and therefore fNk

is integrable on [0, A]. We can easily modify the
above argument (by removing the relevant terms) to show that the upper and lower sums
themselves are 0 on [0, A]. Further, consider that because [0, x] ⊆ [0, A], we have that the absolute
value of the upper and lower sums of

∫ x
0 fNk

(t) are weakly bounded by the upper and lower sums of∫ A
0 fNk

(t), which we just developed and showed converge. Thus2, by Rudin 7.10
∫ x
0 fNk

(t) →→ 0,and
using the decomposition at the top of the page

∫ x
0

∑Nk
n=0

(−1)n(t/δk)
2n+1

C(2n+1)n! dt →→
∫ x
0 sgn(t)dt. We can get

a very similar result on [−A, 0] (considering x < 0) by making slight adjustments to the proof, for
instance we would have M1 = .5 in this direction. Therefore, we have shown uniform convergence on
[−A,A] using Darboux sums to foster a M-test argument.

1This is from class; it means that ak is not bigger then it needs to be
2See appendix at the end of the proof for a rigorous bounding of the upper/lower sums to use the M-test

2
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By (1) at the very beginning, we can consider
∫ x
0

∑Nk
n=0

(−1)n(t/δk)
2n+1

C(2n+1)n! dt =
∑Nk

n=0

∫ x
0

(−1)n(t/δk)
2n+1

C(2n+1)n! dt,
even in the limit (as k → ∞). We know that the integral of a polynomial is a polynomial. Therefore,
given x ∈ A, we can construct a polynomial of order Nk (with Nk +1 or less terms), denoted PNk

(x)
with coefficients dependent on δk (i.e. we increase the order by increasing k, which subsequently
changes all the coefficients because δk also changes), such that PN (x) →→

∫ x
0 sgn(t)dt = |x|

Appendix - formalizing the use of bounds through Darboux sums over the entire interval
Recall that we have a partition Pk for [0, A]. We can take k large enough such that there always
exists j < k s.t Pj (defined the same way, so there are nj < nk partition points) is a partition for
[0, x] on fNk

. So now consider the terms of the upper sums U(fNk
, Pj) =

∑nj

i=1Mi∆i. Define
Sj
i = Mi∆i for i ∈ [1, nj ] and 0 otherwise. Define Sk

i = Mi∆i for i ∈ [1, nk]. Therefore,
U(fNk

, Pj) =
∑nj

i=1 S
j
i and |Sj

i | ≤ |Sk
i | by construction. We showed in the main body of the proof∑

Sk
i is absolutely convergent because the terms are weakly negative. So now we can use Rudin

7.10 and say
∑

Sj
i , and therefore U(fNk

, Pj), is uniformly convergent to 0. The argument to show
the same for the lower sums follows nearly identically. Because the upper and lower sums uniformly
converge to 0, the integral does as well.

2: (fn) cont s.t fn →→ f on E

(a) xn → x (xn, x ∈ E) =⇒ limn fn(xn) = f(x)
Fix ε > 0. By uniform continuity, ∃Nε s.t ∀n > Nε |fn(x)− f(x)| < .5ε (x ∈ E). Since this holds
for any x ∈ E, it also must hold for any element of (xn) ∈ E. By Rudin 7.12, since each fn
continuous and fn →→ f , f is continuous. So by continuity and xn → x, exists Mε s.t ∀n > Mε

|f(xn)− f(x)| < .5ε. Combining results, by the triangle inequality, for all n > (Nε +Mε)

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε

(b) lim fn(xn) = f(x) ≠⇒ xn → x

Consider3 fn(x) = x/n xn ∈ (0, 1) s.t (xn) → 1. Then fn(xn) →→ 0. So f(x) = 0. But f(0) = 0, and
xn ̸→ 0. So putting this all together, lim fn(xn) = 0 = f(0), but xn ̸→ 0.

3: Suppose g and fn on (0,∞) are R on [t, T ] (t, T ∈ R+), |fn| ≤ g, fn →→ f on every K ⊂ R+

compact and
∫∞
0 g(x)dx < ∞. Then limn

∫∞
0 fn(x)dx =

∫∞
0 f(x)dx

For [t, T ] ⊆ R+ (compact and arbitrary), since |fn| ≤ g (for each n) and fn →→ f , we know morally
that since integration preserves ordering, ∃M s.t

∫ T
t |f(x)|dx ≤

∫ T+M
t |g(x)|dx (otherwise g could

not be a uniform bound on objects converging to f), or in other words
∫ T
t |f(x)|dx ≤

∫∞
t |g(x)|dx.∫ T

t |f(x)|dx is increasing in T due to the absolute value, so by the monotonic convergence theorm
its convergent (T → ∞). By standard metric properties |

∫ T
t f(x)dx| ≤

∫ T
t |f(x)|dx, so

∫ T
t f(x)dx

must also be convergent. By given/established properties, this implies
∫ T
t fn(x)dx is also converges.

Fix ε > 0. Since
∫∞
t |g(x)|dx < ∞, we must have upper/lower bounds making the integral

arbitrarily small (otherwise contradiction). In other words, ∃a, b ∈ R+ s.t∫ a

0
|g(x)|dx <

ε

6
and

∫ ∞

b
|g(x)|dx <

ε

6

3Credit to Marc for the counterexample. We showed uniform convergence of x/n earlier in the year
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By fn →→ f on [a.b], ∃N s.t for n > N |fn(x)− f(x)| < ε(b− a)−1. Now taking t ∈ [0, a]∣∣∣∣∫ ∞

t
fn(x)dx−

∫ ∞

t
f(x)dx

∣∣∣∣ ≤ ∫ a

t
|fn(x)− f(x)|dx+

∫ b

a
|fn(x)− f(x)|dx+

∫ ∞

b
|fn(x)− f(x)|dx

≤ 2

∫ a

t
g(x)dx+

ε(b− a)

3(b− a)
+ 2

∫ ∞

b
g(x)dx

< ε

a set from ε > 0. So a, and therefore t, are arbitrarily small. Thus, limn

∫∞
0 fn(x)dx =

∫∞
0 f(x)dx.

4: (fn) incr on R s.t fn(x) ∈ [0, 1] w/ fnk
→ f . Convergence uniform on compact sets if f cont

We will follow4 the (i), (ii), (iii) strategy laid out in Rudin

Let r1 ∈ Q. By the properties of fn, fn(r1) ∈ [0, 1] for any n. By [0, 1] compact and (fn(r1)) ∈ [0, 1],
there is a subsequence (fnj1

(r1)) → f(r1) by Bolzano-Weirstrass. Given r2 ∈ Q (r1 ̸= r2), we can
similarly construct a subsequence (fnj2

(r2)) → f(r2). From Rudin Ch. 2 (Cardinality), we can
construct a sequence (rn) that contains every rational number. So continuing iteratively from before,
we have fnk

= {fnji
}∞i=1, so that (fnjm

(rm)) → f(rm), so we have convergence to all rational points.

Let f∗(x) = sup{f(r)|r ≤ x, r ∈ Q} (x ∈ R). Clearly for any r ∈ Q, f∗(r) ≥ f(r). Assume that
f∗(r) ̸= f(r), so f∗(r) > f(r). Then ∃p ∈ Q and t ∈ R s.t t ∈ (f(r), f(p)) with p < r (since the sup
is over p ≤ r). By the initial definition, f(p) = lim fnk

(p) and f(r) = lim fnk
(r). So ∃Nk s.t

∀nk > Nk t ∈ (fnk
(r), fnk

(p)), contradicting strictly increasing assumption. Thus, f∗(r) = f(r).

Fix ε > 0. Let K ⊆ R compact. By continuity, for c ∈ K ∃ δc s.t |f(x)− f(c)| < ε
4 if x ∈ Bδc(c).

By our limit definitions, there must exists a unifying N s.t for k > N

|fnk
(c− δc)| < .5ε and |fnk

(c+ δc)| <
ε

4

So given x ∈ Bδc(c) and k > N , by the monotonicity of fnk

f(c)− .5ε < f(c− δc)− .25ε < fnk
(c− δc) ≤ fnk

(x) ≤ fnk
(c+ δc) + .25ε < f(x) + .5ε

This implies, again given x ∈ Bδc(c) and k > N , |fnk
(x)− f(x)| < ε by the triangle inequality.

Because we can take a union over Bδc(c) to cover K, there must exists {ci}Mi=1 (M ∈ R) s.t.
K ⊆ ∪M

i=1Bδi(ci). Let Ni be the relevant N (for each i ∈ [1,M ]). Then take N∗ = maxiNi. So for
k > N |fnk

(x)− f(x)| < ε (x ∈ K). N independent of x, so (fnk
) →→ f on any K ⊆ R

5: f cont on R, fn(t) = f(nt) and (fn) equicont on [0, 1]. This implies f is constant on [0,∞]

Fix ε > 0 and x, y > 0 s.t x ̸= y. By the continuity of f , given a, b ∈ [0, 1],
∃δ > 0 s.t |f(a)− f(b)| < ε for a ∈ Bδ(b). By the Archemedian property, ∃N ∈ N s.t we can let
a = x/N, b = y/N (we make them arbitrarily small, so they will be arbitrarily close together.
By fn(t) = f(nt) and fn equicontinuous on [0, 1], for n > N

|f(x)− f(y)| = |fn(x/n)− fn(y/n)| < ε

since d(x/n, y/n) ≤ d(x/N, y/N). ε arbitrary, so f(x) = f(y) for all x ̸= y, thus constant.
4Credit to Greg for notation

4


